[1] WATERMAN A,LEE Y,PATTERSON D A,et al.The RISC-V instruction set manual,volume I:user-level ISA,version 2.1,UCB/EECS-2014-54[R].Berkeley,USA:University of California,Berkeley,2016. [2] PATTERSON D,WATERMAN A.The RISC-V reader:an open architecture atlas[M].[S.l.]:Strawberry Canyon,2017. [3] 雷思磊.RISC-V架构的开源处理器及SOC研究综述[J].单片机与嵌入式系统应用,2017,17(2):56-60. LEI S L.Summary of open source processor and SOC of RISC-V architecture[J].Microcontrollers & Embedded Systems,2017,17(2):56-60.(in Chinese) [4] HUANG J.AI drives the rise of accelerated computing in data centers[EB/OL].(2017-04-10)[2020-05-02].https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/. [5] JOUPPI N P,YOUNG C,PATIL N,et al.In-datacenter performance analysis of a tensor processing unit[C]//Proceedings of the 44th Annual International Symposium on Computer Architecture.New York,USA:ACM Press,2017:1-12. [6] CHEN Y J,CHEN T S,XU Z W,et al.DianNao family:energy-efficient hardware accelerators for machine learning[J].Communications of the ACM,2016,59(11):105-112. [7] CHEN Y H,KRISHNA T,EMER J S,et al.Eyeriss:an energy-efficient reconfigurable accelerator for deep convolutional neural networks[J].IEEE Journal of Solid-State Circuits,2016,52(1):127-138. [8] HENNESSY J L,PATTERSON D A.Computer architecture:a quantitative approach[M].[S.l.]:Morgan Kaufmann,2019. [9] ASANOVIĆ K,AVIZIENIS R,BACHRACH J,et al.The rocket chip generator[EB/OL].(2016-04-16)[2020-05-02].https://digitalassets.lib.berkeley.edu/techreports/ucb/text/EECS-2016-17.pdf. [10] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].(2015-04-10)[2020-05-02].https://arxiv.org/pdf/1409.1556.pdf. [11] IANDOLA F N,HAN S,MOSKEWICZ M W,et al.SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size[EB/OL].(2016-11-04)[2020-05-02].https://arxiv.org/pdf/1602.07360.pdf. [12] HOWARD A G,ZHU M,CHEN B,et al.MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].(2017-04-17)[2020-05-02].https://arxiv.org/pdf/1704.04861v1.pdf. [13] ZHANG X Y,ZHOU X Y,LIN M X,et al.ShuffleNet:an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:6848-6856. [14] BIANCO S,CADENE R,CELONA L,et al.Benchmark analysis of representative deep neural network archi-tectures[J].IEEE Access,2018,6:64270-64277. [15] Hey-Yahei.OpSummary.MXNet[EB/OL].(2019-11-14)[2020-05-02].https://github.com/hey-yahei/OpSummary. [16] MIGACZ S.8-bit inference with tensorrt[EB/OL].[2020-05-02].http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bitinference-with-tensorrt.pdf. [17] IBM.RoCC-software[EB/OL].(2020-02-20)[2020-05-02].https://github.com/IBM/rocc-software. [18] HUANG C,NI S Y,CHEN G S.A layer-based structured design of CNN on FPGA[C]//Proceedings of 2017 IEEE International Conference on ASIC.Washington D.C.,USA:IEEE Press,2017:1037-1040. [19] MOUSOULIOTIS P G,PANAYIOTOU K L,TSARDOULIAS E G,et al.Expanding a robot's life:low power object recognition via FPGA-based DCNN deployment[C]//Proceedings of the 7th International Conference on Modern Circuits and Systems Technologies.Washington D.C.,USA:IEEE Press,2018:1-4. [20] YAO Y C,DUAN Q H,ZHANG Z Q,et al.A FPGA-based hardware accelerator for multiple convolu-tional neural networks[C]//Proceedings of 2018 IEEE International Conference on Solid-State and Integrated Circuit Technology.Washington D.C.,USA:IEEE Press,2018:1-3. [21] Tencent.NCNN[EB/OL].(2020-05-11)[2020-05-02].https://github.com/Tencent/ncnn. |