| 1 |
PENG J H , HU X Y , HUANG W B , et al. What is a multi-modal knowledge graph: a survey. Big Data Research, 2023, 32, 100380.
doi: 10.1016/j.bdr.2023.100380
|
| 2 |
陈囿任, 李勇, 温明, 等. 多模态知识图谱融合技术研究综述. 计算机工程与应用, 2024, 60 (13): 36- 50.
|
|
CHEN Y R , LI Y , WEN M , et al. Research and comprehensive review on multi-modal knowledge graph fusion techniques. Computer Engineering and Applications, 2024, 60 (13): 36- 50.
|
| 3 |
FAN T , WANG H , HODEL T . Multimodal knowledge graph construction of Chinese traditional operas and sentiment and genre recognition. Journal of Cultural Heritage, 2023, 62, 32- 44.
doi: 10.1016/j.culher.2023.05.003
|
| 4 |
LIN L , ZU L Z , GUO F , et al. Using combinatorial optimization to solve entity alignment: an efficient unsupervised model. Neurocomputing, 2023, 558, 126802.
doi: 10.1016/j.neucom.2023.126802
|
| 5 |
QI D L , CHEN S D , SUN X , et al. A multiscale convolutional gragh network using only structural information for entity alignment. Applied Intelligence, 2023, 53 (7): 7455- 7465.
doi: 10.1007/s10489-022-03916-3
|
| 6 |
WANG M , SHI Y H , YANG H , et al. Probing the impacts of visual context in multimodal entity alignment. Data Science and Engineering, 2023, 8 (2): 124- 134.
doi: 10.1007/s41019-023-00208-9
|
| 7 |
WANG C X , HUANG Z H , WAN Y , et al. FuAlign: cross-lingual entity alignment via multi-view representation learning of fused knowledge graphs. Information Fusion, 2023, 89, 41- 52.
doi: 10.1016/j.inffus.2022.08.002
|
| 8 |
CHEN L Y, LI Z, WANG Y J, et al. MMEA: entity alignment for multi-modal knowledge graph[C]//Proceedigns of Knowledge Science, Engineering and Management. Berlin, Germany: Springer, 2020: 134-147.
|
| 9 |
LI J, SONG D D. Uncertainty-aware pseudo label refinery for entity alignment[C]//Proceedings of the ACM Web Conference 2022. New York, USA: ACM Press, 2022: 829-837.
|
| 10 |
MAO X, WANG W T, WU Y B, et al. Boosting the speed of entity alignment 10×: dual attention matching network with normalized hard sample mining[C]//Proceedings of the Web Conference 2021. New York, USA: ACM Press, 2021: 821-832.
|
| 11 |
彭鐄, 曾维新, 周杰, 等. 基于图神经网络的实体对齐表示学习方法比较研究. 计算机科学与探索, 2023, 17 (10): 2343- 2357.
|
|
PENG H , ZENG W X , ZHOU J , et al. Contrast research of representation learning in entity alignment based on graph neural network. Journal of Frontiers of Computer Science and Technology, 2023, 17 (10): 2343- 2357.
|
| 12 |
|
| 13 |
BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2013: 2787-2795.
|
| 14 |
WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2014: 1112-1119.
|
| 15 |
LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2015: 2181-2187.
|
| 16 |
JI G L, HE S Z, XU L H, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, USA: ACL Press, 2015: 687-696.
|
| 17 |
CHEN M H, TIAN Y T, YANG M H, et al. Multilingual knowledge graph embeddings for cross-lingual knowledge alignment[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne, Australia: International Joint Conferences on Artificial Intelligence Organization, 2017: 1511-1517.
|
| 18 |
WANG Z C, LV Q S, LAN X H, et al. Cross-lingual knowledge graph alignment via graph convolutional networks[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL Press, 2018: 349-357.
|
| 19 |
YANG H W, ZOU Y Y, SHI P, et al. Aligning cross-lingual entities with multi-aspect information[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, USA: ACL Press, 2019: 4430-4440.
|
| 20 |
CAI W S , WANG Y Z , MAO S , et al. Multi-heterogeneous neighborhood-aware for knowledge graphs alignment. Information Processing & Management, 2022, 59 (1): 102790.
|
| 21 |
王志宝, 江树涛, 李菲, 等. 基于多邻域感知的石油数据资产图谱实体对齐. 计算机工程, 2024, 50 (1): 339- 347.
doi: 10.19678/j.issn.1000-3428.0066820
|
|
WANG Z B , JIANG S T , LI F , et al. Entity alignment of petroleum data assets graph based on multi-neighborhood awareness. Computer Engineering, 2024, 50 (1): 339- 347.
doi: 10.19678/j.issn.1000-3428.0066820
|
| 22 |
TANG X B, ZHANG J, CHEN B, et al. BERT-INT: a BERT-based interaction model for knowledge graph alignment[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence. Yokohama, Japan: International Joint Conferences on Artificial Intelligence Organization, 2020: 3174-3180.
|
| 23 |
LIU F Y, CHEN M H, ROTH D, et al. Visual pivoting for (unsupervised) entity alignment[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2021: 4257-4266.
|
| 24 |
GUO H , TANG J Y , ZENG W X , et al. Multi-modal entity alignment in hyperbolic space. Neurocomputing, 2021, 461, 598- 607.
doi: 10.1016/j.neucom.2021.03.132
|
| 25 |
CHENG B , ZHU J , GUO M M . MultiJAF: multi-modal joint entity alignment framework for multi-modal knowledge graph. Neurocomputing, 2022, 500, 581- 591.
|
| 26 |
CHEN Z, CHEN J Y, ZHANG W, et al. MEAformer: multi-modal entity alignment transformer for meta modality hybrid[C]//Proceedings of the 31st ACM International Conference on Multimedia. New York, USA: ACM Press, 2023: 3317-3327.
|
| 27 |
ZHU B , WU M , HONG Y P , et al. MMIEA: multi-modal interaction entity alignment model for knowledge graphs. Information Fusion, 2023, 100, 101935.
doi: 10.1016/j.inffus.2023.101935
|
| 28 |
CHEN L Y, LI Z, XU T, et al. Multi-modal Siamese network for entity alignment[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2022: 118-126.
|
| 29 |
XIE R B, LIU Z Y, LIN F, et al. Does William Shakespeare really write Hamlet? Knowledge representation learning with confidence[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2018: 4954-4961.
|
| 30 |
JIA S B, XIANG Y, CHEN X J, et al. Triple trustworthiness measurement for knowledge graph[C]//Proceedings of the World Wide Web Conference. New York, USA: ACM Press, 2019: 2865-2871.
|
| 31 |
|
| 32 |
LIU Y, LI H, GARCIA-DURAN A, et al. MMKG: multi-modal knowledge graphs[C]//Proceedings of the Semantic Web. Berlin, Germany: Springer, 2019: 459-474.
|
| 33 |
RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[EB/OL]. [2024-03-09]. https://arxiv.org/abs/2103.00020.
|
| 34 |
ZHU J , HUANG C Q , DE MEO P . DFMKE: a dual fusion multi-modal knowledge graph embedding framework for entity alignment. Information Fusion, 2023, 90, 111- 119.
doi: 10.1016/j.inffus.2022.09.012
|