作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2010, Vol. 36 ›› Issue (12): 207-208. doi: 10.3969/j.issn.1000-3428.2010.12.071

• 人工智能及识别技术 • 上一篇    下一篇

基于完全二维对称主成分分析的人脸识别

王丽华,秦婵婵,徐洪波   

  1. (华中师范大学物理科学与技术学院,武汉 430079)
  • 出版日期:2010-06-20 发布日期:2010-06-20
  • 作者简介:王丽华(1983-),女,硕士研究生,主研方向:模式识别,图像处理,信号处理;秦婵婵,硕士研究生;徐洪波,副教授
  • 基金资助:

    湖北省自然科学基金资助项目(2009CDB096)

Face Recognition Based on Complete 2D Symmetrical PCA

WANG Li-hua, QIN Chan-chan, XU Hong-bo   

  1. (College of Physical Science and Technology, Huazhong Normal University, Wuhan 430079)
  • Online:2010-06-20 Published:2010-06-20

摘要: 镜像对称性是人脸的一个直观明显的自然特性,结合该特性在完全二维主成分分析的基础上提出完全二维对称主成分分析的人脸识别方法。该方法通过镜像变换得到奇对称样本和偶对称样本,分别对奇偶对称样本进行完全二维主成分分析,通过奇偶加权因子对奇偶对称样本的特征矩阵进行组合,并采用最近邻距离分类器分类。在ORL人脸数据库上的实验表明,该方法有较好的识别效果。

关键词: 人脸识别, 镜像对称性, 完全二维主成分分析, 完全二维对称主成分分析

Abstract:

As facial symmetry is a natural characteristic of face images, this paper proposes a face recognition method based on complete two-dimensional PCA, and the Complete 2D Symmetrical PCA(C2DSPCA). The odd symmetry samples and the even symmetry samples are received by mirror transforming. Odd/even symmetrical samples’ eigen matrixes are separately extracted through the Completely 2D PCA(C2DPCA) and used to form the features by an odd-even weighted factor. A nearest neighbor classifier is employed to classify the extracted features. The method is evaluated on the ORL face image database. Experimental results show the proposed method achieves better performance.

Key words: face recognition, facial symmetry, Complete 2D PCA(C2DPCA), Complete 2D Symmetrical PCA(C2DSPCA)

中图分类号: