[1] MING Z, VIDANI M, LUQMAN M M, et al.A survey on anti-spoofing methods for facial recognition with RGB cameras of generic consumer devices[J].Journal of Imaging, 2020, 6(12):139. [2] RAMACHANDRA R, BUSCH C.Presentation attack detection methods for face recognition systems:a comprehensive survey[J].ACM Computing Surveys, 2017, 50(1):1-41. [3] JIA S, GUO G, XU Z.A survey on 3D mask presentation attack detection and countermeasures[J].Pattern Recognition, 2020, 98:1-13. [4] BOBBIA S, BENEZETH Y, DUBOIS J.Remote photoplethysmography based on implicit living skin tissue segmentation[C]//Proceedings of the 23rd International Conference on Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:361-365. [5] LI X, KOMULAINEN J, ZHAO G, et al.Generalized face anti-spoofing by detecting pulse from face videos[C]//Proceedings of the 23rd International Conference on Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:4244-4249. [6] LI X, CHEN J, ZHAO G, et al.Remote heart rate measurement from face videos under realistic situations[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2014:4264-4271. [7] NOWARA E M, SABHARWAL A, VEERARAGHAVAN A.PPGSecure:biometric presentation attack detection using photopletysmograms[C]//Proceedings of the 12th IEEE International Conference on Automatic Face & Gesture Recognition.Washington D.C., USA:IEEE Press, 2017:56-62. [8] LIU Y, JOURABLOO A, LIU X.Learning deep models for face anti-spoofing:binary or auxiliary supervision[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:389-398. [9] LIU S Q, YUEN P C, ZHANG S P, et al.3D mask face anti-spoofing with remote photoplethysmography[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:2016:85-100. [10] PAN G, WU Z, SUN L.Liveness detection for face recognition[M].[S.1.]:InTech Press, 2008:109-124. [11] PAN G, SUN L, WU Z, et al.Eyeblink-based anti-spoofing in face recognition from a generic Webcamera[C]//Proceedings of the 11th IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2007:1-8. [12] WANG L, DING X, FANG C.Face live detection method based on physiological motion analysis[J].Tsinghua Science & Technology, 2009, 14(6):685-690. [13] JEE H K, JUNG S U, YOO J H.Liveness detection for embedded face recognition system[J].International Journal of Biological and Medical Sciences, 2006, 1(4):235-238. [14] ALI A, DERAVI F, HOQUS S.Liveness detection using gaze collinearity[C]//Proceedings of the 3rd International Conference on Emerging Security Technologies.Washington D.C., USA:IEEE Press, 2012:62-65. [15] BARRON J L, FLEET D J, BEAUCHEMIN S S.Performance of optical flow techniques[J].International Journal of Computer Vision, 1994, 12(1):43-77. [16] BAO W, LI H, LI N, et al.A liveness detection method for face recognition based on optical flow field[C]//Proceedings of 2009 International Conference on Image Analysis and Signal Processing.Washington D.C., USA:IEEE Press, 2009:233-236. [17] KOLLREIDER K, FRONTHALER H, BIGUN J.Evaluating liveness by face images and the structure tensor[C]//Proceedings of the 4th IEEE Workshop on Automatic Identification Advanced Technologies.Washington D.C., USA:IEEE Press, 2005:75-80. [18] KOLLREIDER K, FRONTHALER H, BIGUN J.Non-intrusive liveness detection by face images[J].Image and Vision Computing, 2009, 27(3):233-244. [19] COSTA-PAZO A, BHATTACHARJEE S.The replay-mobile face presentation-attack database[C]//Proceedings of 2016 International Conference on Biometrics Special Interest Group.Washington D.C., USA:IEEE Press, 2016:1-7. [20] PAN G, SUN L, WU Z H, et al.Monocular camera-based face liveness detection by combining eyeblink and scene context[J].Telecommunication Systems, 2011, 47(3/4):215-225. [21] KIM Y, YOO J H, CHOI K.A motion and similarity-based fake detection method for biometric face recognition systems[J].IEEE Transactions on Consumer Electronics, 2011, 57(2):756-762. [22] ANJOS A, CHAKKA M M, MARCEL S.Motion-based counter-measures to photo attacks in face recognition[J].IET Biometrics, 2013, 3(3):147-158. [23] SHAO R, LAN X, YUEN P C.Deep convolutional dynamic texture learning with adaptive channel-discriminability for 3D mask face anti-spoofing[C]//Proceedings of 2017 IEEE International Joint Conference on Biometrics.Washington D.C., USA:IEEE Press, 2017:748-755. [24] SHAO R, LAN X, YUEN P C.Joint discriminative learning of deep dynamic textures for 3d mask face anti-spoofing[J].IEEE Transactions on Information Forensics and Security, 2018, 14(4):923-938. [25] XU Z, LI S, DENG W.Learning temporal features using LSTM-CNN architecture for face anti-spoofing[C]//Proceedings of the 3rd IEEE Conference on Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:141-145. [26] GAN J, LI S, ZHAI Y, et al.3D convolutional neural network based on face anti-spoofing[C]//Proceedings of the 2nd International Conference on Multimedia and Image Processing.Washington D.C., USA:IEEE Press, 2017:1-5. [27] YANG X, LUO W, BAO L, et al.Face anti-spoofing:model matters, so does data[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:3507-3516. [28] SEO J, CHUNG I J.Face liveness detection using thermal face-CNN with external knowledge[J].Symmetry, 2019, 11(3):360. [29] SAFARZADEH M, GHASEMI M, KHORAMDEL J, et al.A secure face anti-spoofing approach using deep learning[C]//Proceedings of the 7th International Conference on Robotics and Mechatronics.Washington D.C., USA:IEEE Press, 2019:322-327. [30] KOWALSKI M.A study on presentation attack detection in thermal infrared[J].Sensors, 2020, 20(14):3988. [31] XI S, YANG L, ZHAO Y.A practical design for face recognition with anti-spoofing based on non-visible light cameras[J].Academic Journal of Computing & Information Science, 2020, 3(2):156-168. [32] MAATTA J, HADID A, PIETIKAINEN M.Face spoofing detection from single images using micro-texture analysis[C]//Proceedings of 2011 International Joint Conference on Biometrics.Washington D.C., USA:IEEE Press, 2011:1-7. [33] KIM G, EUM S, SUHR J K, et al.Face liveness detection based on texture and frequency analyses[C]//Proceedings of the 5th IAPR International Conference on Biometrics.Washington D.C., USA:IEEE Press, 2012:67-72. [34] DAS D, CHAKRABORTY S.Face liveness detection based on frequency and micro-texture analysis[C]//Proceedings of 2014 International Conference on Advances in Engineering & Technology Research.Washington D.C., USA:IEEE Press, 2014:1-4. [35] TREFNY J, MATAS J.Extended set of local binary patterns for rapid object detection[C]//Proceedings of Computer Vision Winter Workshop.Washington D.C., USA:IEEE Press, 2010:1-7. [36] FREITAS PEREIRA T, ANJOS A, MARTINO J M, et al.LBP-TOP based countermeasure against face spoofing attacks[C]//Proceedings of ACCVʼ12.Berlin, Germany:Springer, 2012:121-132. [37] YANG J, LEI Z, LIAO S, et al.Face liveness detection with component dependent descriptor[C]//Proceedings of 2013 International Conference on Biometrics.Washington D.C., USA:IEEE Press, 2013:1-6. [38] MAATTA J, HADID A, PIETIKAINEN M.Face spoofing detection from single images using texture and local shape analysis[J].IET Biometrics, 2012, 1(1):3-10. [39] DE FREITAS P T, ANJOS A, DE MARTINO J M, et al.Can face anti-spoofing countermeasures work in a real world scenario?[C]//Proceedings of 2013 IEEE International Conference on Biometrics.Washington D.C., USA:IEEE Press, 2013:1-8. [40] TAN X Y, LI Y, LIU J, et al.Face liveness detection from a single image with sparse low rank bilinear discriminative model[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2010:504-517. [41] ZHANG Z, YAN J, LIU S, et al.A face antispoofing database with diverse attacks[C]//Proceedings of the 5th IAPR International Conference on Biometrics.Washington D.C., USA:IEEE Press, 2012:26-31. [42] PEIXOTO B, MICHELASSI C, ROCHA A.Face liveness detection under bad illumination conditions[C]//Proceedings of the 18th IEEE International Conference on Image Processing.Washington D.C., USA:IEEE Press, 2011:3557-3560. [43] KOMULAINEN J, HADID A, PIETIKÄINEN M.Context based face anti-spoofing[C]//Proceedings of the 6th IEEE International Conference on Biometrics:Theory, Applications and Systems.Washington D.C., USA:IEEE Press, 2013:1-8. [44] BOULKENAFET Z, KOMULAINEN J, HADID A.Face antispoofing using speeded-up robust features and fisher vector encoding[J].IEEE Signal Processing Letters, 2016, 24(2):141-145. [45] PATEL K, HAN H, JAIN A K.Secure face unlock:spoof detection on smartphones[J].IEEE Transactions on Information Forensics and Security, 2016, 11(10):2268-2283. [46] OJALA T, PIETIKAINEN M, MAENPAA T.Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7):971-987. [47] BOULKENAFET Z, KOMULAINEN J, HADID A.Face anti-spoofing based on color texture analysis[C]//Proceedings of 2015 IEEE International Conference on Image Processing.Washington D.C., USA:IEEE Press, 2015:2636-2640. [48] BOULKENAFET Z, KOMULAINEN J, HADID A.Face spoofing detection using colour texture analysis[J].IEEE Transactions on Information Forensics and Security, 2016, 11(8):1818-1830. [49] LI J, WANG Y, TAN T, et al.Live face detection based on the analysis of fourier spectra[C]//Proceedings of IEEE International Conference on Biometric Technology for Human Identification.Washington D.C., USA:IEEE Press, 2004:296-303. [50] BOULKENAFET Z, KOMULAINEN J, FENG X, et al.Scale space texture analysis for face anti-spoofing[C]//Proceedings of 2016 International Conference on Biometrics.Washington D.C., USA:IEEE Press, 2016:1-6. [51] WEN D, HAN H, JAIN A K.Face spoof detection with image distortion analysis[J].IEEE Transactions on Information Forensics and Security, 2015, 10(4):746-761. [52] KOSE N, DUGELAY J L.Countermeasure for the protection of face recognition systems against mask attacks[C]//Proceedings of the 10th IEEE International Conference on Automatic Face and Gesture Recognition.Washington D.C., USA:IEEE Press, 2013:1-6. [53] KOSE N, DUGELAY J L.Shape and texture based countermeasure to protect face recognition systems against mask attacks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2013:111-116. [54] ERDOGMUS N, MARCEL S.Spoofing face recognition with 3D masks[J].IEEE Transactions on Information Forensics and Security, 2014, 9(7):1084-1097. [55] NESLI E, MARCEL S.Spoofing in 2D face recognition with 3D masks and anti-spoofing with kinect[C]//Proceedings of the 6th IEEE International Conference on Biometrics:Theory, Applications and Systems.Washington D.C., USA:IEEE Press, 2013:1-8. [56] AGARWAL A, SINGH R, VATSA M.Face anti-spoofing using Haralick features[C]//Proceedings of the 8th IEEE International Conference on Biometrics Theory, Applications and Systems.Washington D.C., USA:IEEE Press, 2016:1-6. [57] RAGHAVENDRA R, BUSCH C.Novel presentation attack detection algorithm for face recognition system:application to 3D face mask attack[C]//Proceedings of IEEE International Conference on Image Processing.Washington D.C., USA:IEEE Press, 2014:323-327. [58] RAGHAVENDRA R, BUSCH C.Robust 2D/3D face mask presentation attack detection scheme by exploring multiple features and comparison score level fusion[C]//Proceedings of the 17th International Conference on Information Fusion.Washington D.C., USA:IEEE Press, 2014:1-7. [59] NAVEEN S, FATHIMA R S, MONI R S.Face recognition and authentication using LBP and BSIF mask detection and elimination[C]//Proceedings of 2016 International Conference on Communication Systems and Networks.Washington D.C., USA:IEEE Press, 2016:99-102. [60] SIDDIQUI T A, BHARADWAJ S, DHAMECHA T I, et al.Face anti-spoofing with multi-feature videolet aggregation[C]//Proceedings of the 23rd International Conference on Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:1035-1040. [61] YANG J, LEI Z, LI S Z.Learn convolutional neural network for face anti-spoofing[EB/OL].[2021-02-10].https://arxiv.org/pdf/1408.5601.pdf. [62] PATEL K, HAN H, JAIN A K.Cross-database face antispoofing with robust feature representation[C]//Proceedings of CCBRʼ16.Berlin, Germany:Springer, 2016:611-619. [63] LI L, FENG X, BOULKENAFET Z, et al.An original face anti-spoofing approach using partial convolutional neural network[C]//Proceedings of the 6th International Conference on Image Processing Theory, Tools and Applications.Washington D.C., USA:IEEE Press, 2016:1-6. [64] WU L F, XU Y W, XU X, et al.A face liveness detection scheme to combining static and dynamic features[C]//Proceedings of CCBRʼ16.Berlin, Germany:Springer, 2016:628-636. [65] FENG L, PO L M, LI Y, et al.Integration of image quality and motion cues for face anti-spoofing:a neural network approach[J].Journal of Visual Communication and Image Representation, 2016, 38:451-460. [66] LUCENA O, JUNIOR A, MOIA V, et al.Transfer learning using convolutional neural networks for face anti-spoofing[C]//Proceedings of International Conference on Image Analysis and Recognition.Berlin, Germany:Springer, 2017:27-34. [67] KRIZHEVSKY A, SUTSKEVER I, HINYON G E.Imagenet classification with deep convolutional neural networks[J].Neural Information Processing Systems, 2012, 25:1097-1105. [68] KIM Y, NA J, YOON S, et al.Masked fake face detection using radiance measurements[J].Journal of the Optical Society of America A, 2009, 26(4):760-766. [69] HERNANDEZ-ORTEGA J, FIERREZ J, MORALES A, et al.Time analysis of pulse-based face anti-spoofing in visible and NIR[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:544-552. [70] ZHANG Z, YI D, LEI Z, et al.Face liveness detection by learning multispectral reflectance distributions[C]//Proceedings of 2011 IEEE International Conference on Automatic Face & Gesture Recognition.Santa Barbara, USA:IEEE Press, 2011:436-441. [71] ZHANG S, WANG X, LIU A, et al.A dataset and benchmark for large-scale multi-modal face anti-spoofing[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:919-928. [72] RAGHAVENDRA R, RAJA K B, VENKATESH S, et al.Extended multispectral face presentation attack detection:an approach based on fusing information from individual spectral bands[C]//Proceedings of the 20th International Conference on Information Fusion.Washington D.C., USA:IEEE Press, 2017:1-6. [73] BLANZ V, VETTER T.A morphable model for the synthesis of 3D faces[C]//Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques.Washington D.C., USA:IEEE Press, 1999:187-194. [74] JOURABLOO A, LIU X.Pose-invariant 3D face alignment[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2015:3694-3702. [75] JOURABLOO A, YE M, LIU X, et al.Pose-invariant face alignment with a single CNN[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:3200-3209. [76] RICHARDSON E, SELA M, OR-El R, et al.Learning detailed face reconstruction from a single image[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:1259-1268. [77] ROTH J, TONG Y, LIU X.Adaptive 3D face reconstruction from unconstrained photo collections[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:4197-4206. [78] ATOUM Y, LIU Y, JOURABLOO A, et al.Face anti-spoofing using patch and depth-based CNNs[C]//Proceedings of IEEE International Joint Conference on Biometrics.Washington D.C., USA:IEEE Press, 2017:319-328. [79] WANG Z, ZHAO C, QIN Y, et al.Exploiting temporal and depth information for multi-frame face anti-spoofing[EB/OL].[2021-02-10].https://arxiv.org/pdf/1811.05118.pdf. [80] WANG Y, NIAN F, LI T, et al.Robust face anti-spoofing with depth information[J].Journal of Visual Communication and Image Representation, 2017, 49(3):332-337. [81] SUN X, HUANG L.Multimodal face spoofing detection via RGB-D images[C]//Proceedings of the 24th International Conference on Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:2221-2226. [82] JIANG F, LIU P, ZHOU X.Multilevel fusing paired visible light and near-infrared spectral images for face anti-spoofing[J].Pattern Recognition Letters, 2019, 128:30-37. [83] SONG L, LIU C.Face liveness detection based on joint analysis of RGB and near-infrared image of faces[J].Electronic Imaging, 2018(10):373-386. [84] SUN X, HUANG L, LIU C.Multispectral face spoofing detection using VIS-NIR imaging correlation[J].International Journal of Wavelets, Multiresolution and Information Processing, 2018, 16(2):184-193. [85] ZHANG S, LIU A, WAN J, et al.CASIA-SURf:a large-scale multi-modal benchmark for face anti-spoofing[J].IEEE Transactions on Biometrics, Behavior, and Identity Science, 2020, 2(2):182-193. [86] HU J, SHEN L, SUN G.Squeeze-and-excitation networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:7132-7141. [87] WANG G, LAN C, HAN H, et al.Multi-modal face presentation attack detection via spatial and channel attentions[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:576-587. [88] SHEN T, HUANG Y, TONG Z.Facebagnet:bag-of-local-features model for multi-modal face anti-spoofing[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:354-363. [89] ZHANG P, ZOU F, WU Z, et al.Feathernets:convolutional neural networks as light as feather for face anti-spoofing[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach, USA:IEEE Press, 2019:1-11 [90] PARKIN A, GRINCHUK O.Recognizing multi-modal face spoofing with face recognition networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:126-149. [91] GEORGE A, MARCEL S.Can your face detector do anti-spoofing? Face presentation attack detection with a multi-channel face detector[EB/OL].[2021-02-10].https://arxiv.org/abs/2006.16836v2. [92] AGARWAL A, YADAV D, KOHLI N, et al.Face presentation attack with latex masks in multispectral videos[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:81-89. [93] SANCHEZ M A, CONDE C, GOMEZ-AYLLON B, et al.Convolutional neural network approach for multispectral facial presentation attack detection in automated border control systems[J].Entropy, 2020, 22(11):1296. [94] YANG J, LEI Z, YI D, et al.Person-specific face antispoofing with subject domain adaptation[J].IEEE Transactions on Information Forensics and Security, 2015, 10(4):797-809. [95] ARASHLOO S R, KITTLER J, CHRISTMAS W.An anomaly detection approach to face spoofing detection:a new formulation and evaluation protocol[J].IEEE Access, 2017, 5:13868-13882. [96] NIKISINS O, MOHAMMADI A, ANJOS A, et al.On effectiveness of anomaly detection approaches against unseen presentation attacks in face anti-spoofing[C]//Proceedings of 2018 International Conference on Biometrics.Washington D.C., USA:IEEE Press, 2018:75-81. [97] CHINGOVSKA I, DOS ANJOS A R.On the use of client identity information for face antispoofing[J].IEEE Transactions on Information Forensics and Security, 2015, 10(4):787-796. [98] FATEMIFAR S, ARASHLOO S R, AWAIS M, et al.Spoofing attack detection by anomaly detection[C]//Proceedings of 2019 IEEE International Conference on Acoustics, Speech and Signal Processing.Washington D.C., USA:IEEE Press, 2019:8464-8468. [99] FATEMIFAR S, AWAIS M, ARASHLOO S R, et al.Combining multiple one-class classifiers for anomaly based face spoofing attack detection[C]//Proceedings of 2019 International Conference on Biometrics.Washington D.C., USA:IEEE Press, 2019:1-7. [100] FENG H, HONG Z, YUE H, et al.Learning generalized spoof cues for face anti-spoofing[EB/OL].[2021-02-10].https://arxiv.org/abs/2005.03922v1. [101] OZA P, PATEL V M.One-class convolutional neural network[J].IEEE Signal Processing Letters, 2018, 26(2):277-281. [102] BAWEJA Y, OZA P, PERERA P, et al.Anomaly detection-based unknown face presentation attack detection[C]//Proceedings of 2020 IEEE International Joint Conference on Biometrics.Washington D.C., USA:IEEE Press, 2020:1-9. [103] ABDUH L, IVRISSIMTZIS I.Use of in-the-wild images for anomaly detection in face anti-spoofing[EB/OL].[2021-02-10].https://arxiv.org/abs/2006.10626. [104] ZHOU J, SHU K, ZHAO D, et al.Domain adaptation based person-specific face anti-spoofing using color texture features[C]//Proceedings of the 5th International Conference on Machine Learning Technologies.Washington D.C., USA:IEEE Press, 2020:79-85. [105] LI H, LI W, CAO H, et al.Unsupervised domain adaptation for face anti-spoofing[J].IEEE Transactions on Information Forensics and Security, 2018, 13(7):1794-1809. [106] ZHOU F, GAO C, CHEN F, et al.Face anti-spoofing based on multi-layer domain adaptation[C]//Proceedings of 2019 IEEE International Conference on Multimedia & Expo Workshops.Washington D.C., USA:IEEE Press, 2019:192-197. [107] WANG G, HAN H, SHAN S, et al.Improving cross-database face presentation attack detection via adversarial domain adaptation[C]//Proceedings of 2019 International Conference on Biometrics.Washington D.C., USA:IEEE Press, 2019:1-8. [108] SHAO R, LAN X, LI J, et al.Multi-adversarial discriminative deep domain generalization for face presentation attack detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:10023-10031. [109] JIA Y, ZHANG J, SHAN S, et al.Single-side domain generalization for face anti-spoofing[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:8484-8493. [110] LIU Y, STEHOUWER J, JOURABLOO A, et al.Deep tree learning for zero-shot face anti-spoofing[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:4680-4689. [111] QIN Y, ZHAO C, ZHU X, et al.Learning meta model for zero-and few-shot face anti-spoofing[J].Artificial Intelligence, 2020, 34(7):11916-11923. [112] FINN C, ABBEEL P, LEVINE S.Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proceedings of International Conference on Machine Learning.Washington D.C., USA:IEEE Press, 2017:1126-1135. [113] SHAO R, LAN X, YUEN P C.Regularized fine-grained meta face anti-spoofing[J].Artificial Intelligence, 2020, 34(7):11974-11981. [114] JOURABLOO A, LIU Y J, LIU X M.Face de-spoofing:anti-spoofing via noise modeling[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:290-306. [115] ZHANG K Y, YAO T, ZHANG J, et al.Face anti-spoofing via disentangled representation learning[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2020:641-657. [116] WANG G, HAN H, SHAN S, et al.Cross-domain face presentation attack detection via multi-domain disentangled representation learning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:6678-6687. [117] LIU Y, STEHOUWER J, LIU X.On disentangling spoof trace for generic face anti-spoofing[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2020:406-422. [118] CHINGOVSKA I, ANJOS A, MARCEL S.On the effectiveness of local binary patterns in face anti-spoofing[C]//Proceedings of International Conference on Biometrics Special Interest Group.Washington D.C., USA:IEEE Press, 2012:1-7. [119] CHINGOVSKA I, ERDOGMUS N, ANJOS A, et al.Face recognition systems under spoofing attacks[C]//Proceedings of International Conference on Face Recognition Across the Imaging Spectrum.Berlin, Germany:Springer, 2016:165-194. [120] BOULKENAFET Z, KOMULAINEN J, LI L, et al.OULU-NPU:a mobile face presentation attack database with real-world variations[C]//Proceedings of the 12th IEEE International Conference on Automatic Face & Gesture Recognition.Washington D.C., USA:IEEE Press, 2017:612-618. [121] LIU S, YANG B, YUEN P C, et al.A 3D mask face anti-spoofing database with real world variations[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:100-106. [122] MANJANI I, TARIYAL S, VATSA M, et al.Detecting silicone mask-based presentation attack via deep dictionary learning[J].IEEE Transactions on Information Forensics and Security, 2017, 12(7):1713-1723. [123] BHATTACHARJEE S, MOHAMMADI A, MARCEL S.Spoofing deep face recognition with custom silicone masks[C]//Proceedings of the 9th IEEE International Conference on Biometrics Theory, Applications and Systems.Washington D.C., USA:IEEE Press, 2018:1-7. [124] GEORGE A, MOSTAANI Z, GEISSENBUHLER D, et al.Biometric face presentation attack detection with multi-channel convolutional neural network[J].IEEE Transactions on Information Forensics and Security, 2019, 15(3):42-55. [125] LIU A, TAN Z, WAN J, et al.CASIA-SURF CeFA:a benchmark for multi-modal cross-ethnicity face anti-spoofing[C]//Proceedings of IEEE/CVF Winter Conference on Applications of Computer Vision.Washington D.C., USA:IEEE Press, 2021:1179-1187. [126] ZHANG Y H, YIN Z F, LI Y D, et al.CelebA-Spoof:large-scale face anti-spoofing dataset with rich annotations[C]//Proceedings of ECCVʼ20.Berlin, Germany:Springer, 2020:70-85. [127] ANJOS A, MARCEL S.Counter-measures to photo attacks in face recognition:a public database and a baseline[C]//Proceedings of 2011 International Joint Conference on Biometrics.Washington D.C., USA:IEEE Press, 2011:1-7. [128] WANG T, YANG J, LEI Z, et al.Face liveness detection using 3D structure recovered from a single camera[C]//Proceedings of 2013 International Conference on Biometrics.Washington D.C., USA:IEEE Press, 2013:1-6. [129] SUN L, PAN G, WU Z, et al.Blinking-based live face detection using conditional random fields[C]//Proceedings of International Conference on Biometrics.Berlin, Germany:Springer, 2007:252-260. [130] LI H, PAN S J, WANG S, et al.Domain generalization with adversarial feature learning[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:5400-5409. [131] SAHA S, XU W, KANAKIS M, et al.Domain agnostic feature learning for image and video based face anti-spoofing[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:802-803. |