作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2024, Vol. 50 ›› Issue (8): 259-269. doi: 10.19678/j.issn.1000-3428.0068289

• 图形图像处理 • 上一篇    下一篇

基于深度特征抑制的遮挡人脸识别网络

王富平1,*(), 刘鸿玮1, 张锲石2, 段冠庄1   

  1. 1. 西安邮电大学通信与信息工程学院, 陕西 西安 710121
    2. 中国科学院深圳先进技术研究院, 广东 深圳 518055
  • 收稿日期:2023-08-28 出版日期:2024-08-15 发布日期:2024-06-14
  • 通讯作者: 王富平
  • 基金资助:
    公安部科技强警基础工作专项项目(2020GABJC42); 国家自然科学基金青年科学基金项目(61802305)

Occluded Face Recognition Network Based on Deep Feature Suppression

Fuping WANG1,*(), Hongwei LIU1, Qieshi ZHANG2, Guanzhuang DUAN1   

  1. 1. School of Communication and Information Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, Shaanxi, China
    2. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
  • Received:2023-08-28 Online:2024-08-15 Published:2024-06-14
  • Contact: Fuping WANG

摘要:

人脸识别技术是公安侦查中人证核验的关键技术之一。尽管现有算法在无遮挡人脸识别上都能达到较高的识别精度, 但当人脸被遮挡时, 使得有效的人脸特征丢失, 导致识别精度大幅下降。针对上述问题, 提出一种基于深度特征抑制的遮挡人脸识别网络, 通过遮挡人脸自适应地生成特征掩码, 利用特征掩码抑制深层特征图中因遮挡损坏的特征, 最后根据抑制后的特征完成人脸识别。为了提升抑制后特征的辨别力, 在训练环节通过孪生网络结构将遮挡人脸与对应无遮挡人脸的深度特征进行度量学习。同时利用不同层次的特征信息, 构建特征金字塔网络(FPN)和自适应特征融合模块对人脸的多尺度特征信息进行提取, 对其中包含特征信息较多的特征层赋予更大的融合权重, 从而增强特征的表征能力。实验结果表明, 该方法具有较好的鲁棒性, 其中在LFW数据集和LFW口罩遮挡数据集上的准确率分别达到了99.50%和98.42%, 在AR数据集4个实验设置上的准确率分别达到了100%、100%、99.86%和99.02%, 优于目前的主流算法。

关键词: 人脸识别, 遮挡人脸识别, 自适应特征融合, 特征掩码, 度量学习

Abstract:

Facial recognition technology is a key technology for verifying personal evidence in public security investigations. Although existing algorithms can achieve high recognition accuracy in unobstructed face recognition, effective facial features are lost when a face is occluded, resulting in a significant decrease in recognition accuracy. Hence, an occluded face recognition network based on deep feature suppression is proposed to address these issues. The network adaptively generates feature masks based on occluded faces, suppresses features damaged by occlusion in deep feature maps through feature masks, and uses the suppressed features to complete face recognition. To improve the discrimination of suppressed features, a twin network structure is used in the training phase to measure and learn the depth features of the occluded and corresponding unobstructed faces. Simultaneously, to fully utilize different levels of feature information, a Feature Pyramid Network (FPN) and an adaptive feature fusion module are constructed to extract multiscale feature information from faces. The feature layers containing more feature information are assigned greater fusion weights, thereby enhancing the representation abilities of the features. The experimental results show that the proposed method has good robustness, with accuracy rates of 99.50% and 98.42% for the LFW and LFW mask occlusions in the dataset, respectively, and 100%, 100%, 99.86%, and 99.02% for the four experimental settings in the AR dataset, respectively, surpassing those of current mainstream algorithms.

Key words: face recognition, occluded face recognition, adaptive feature integration, feature mask, metric learning