1 |
WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210- 227.
doi: 10.1109/TPAMI.2008.79
|
2 |
WAGNER A, WRIGHT J, GANESH A, et al. Towards a practical face recognition system: robust registration and illumination by sparse representation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2009: 597-604.
|
3 |
DENG W H, HU J N, GUO J. Extended SRC: undersampled face recognition via intraclass variant dictionary. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(9): 1864- 1870.
doi: 10.1109/TPAMI.2012.30
|
4 |
唐娴, 黄军伟. 低秩鲁棒性主成分分析的遮挡人脸识别. 南京理工大学学报, 2017, 41(4): 460- 465.
URL
|
|
TANG X, HUANG J W. Occlusion face recognition based on robust principal component analysis and low rank. Journal of Nanjing University of Science and Technology, 2017, 41(4): 460- 465.
URL
|
5 |
王丽娟, 李可爱, 郝志峰, 等. 基于低秩表示的鲁棒回归模型. 计算机工程, 2020, 46(1): 74-79, 86.
URL
|
|
WANG L J, LI K A, HAO Z F, et al. Robust regression model based on low rank representation. Computer Engineering, 2020, 46(1): 74-79, 86.
URL
|
6 |
ZHOU Z H, WAGNER A, MOBAHI H, et al. Face recognition with contiguous occlusion using Markov random fields[C]//Proceedings of the 12th IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2009: 1050-1057.
|
7 |
|
8 |
CHAN T H, JIA K, GAO S, et al. PCANet: a simple deep learning baseline for image classification?. IEEE Transactions on Image Processing, 2015, 24(12): 5017- 5032.
doi: 10.1109/TIP.2015.2475625
|
9 |
LIU W Y, WEN Y D, YU Z D, et al. SphereFace: deep hypersphere embedding for face recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 212-220.
|
10 |
WANG H, WANG Y T, ZHOU Z, et al. CosFace: large margin cosine loss for deep face recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 5265-5274.
|
11 |
DENG J K, GUO J, XUE N N, et al. ArcFace: additive angular margin loss for deep face recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 4690-4699.
|
12 |
SONG L X, GONG D H, LI Z F, et al. Occlusion robust face recognition based on mask learning with pairwise differential Siamese network[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 773-782.
|
13 |
QIU H B, GONG D H, LI Z F, et al. End2End occluded face recognition by masking corrupted features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(10): 6939- 6952.
doi: 10.1109/TPAMI.2021.3098962
|
14 |
徐润昊, 程吉祥, 李志丹, 等. 基于循环生成对抗网络的含遮挡人脸识别. 计算机工程, 2022, 48(5): 289-296, 305.
URL
|
|
XU R H, CHENG J X, LI Z D, et al. Face recognition with occlusion based on cyclic generative adversarial networks. Computer Engineering, 2022, 48(5): 289-296, 305.
URL
|
15 |
CHEN S, LIU Y, GAO X, et al. MobileFaceNets: efficient CNNs for accurate real-time face verification on mobile devices[M]. Berlin, Germany: Springer, 2018: 428-438.
|
16 |
HAO S Z, CHEN C F, CHEN Z F, et al. A unified framework for masked and mask-free face recognition via feature rectification[C]//Proceedings of IEEE International Conference on Image Processing. Washington D. C., USA: IEEE Press, 2022: 726-730.
|
17 |
YUAN G, ZHENG H C, DONG J Y. MSML: enhancing occlusion-robustness by multi-scale segmentation-based mask learning for face recognition. Artificial Intelligence, 2022, 36(3): 3197- 3205.
|
18 |
KIM M, JAIN A K, LIU X M. AdaFace: quality adaptive margin for face recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 18750-18759.
|
19 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 2117-2125.
|
20 |
HUANG G B, MATTAR M A, BERG T L, et al. Labeled faces in the wild: a database for studying face recognition in unconstrained environments[EB/OL]. [023-07-20]. https://vis-www.cs.umass.edu/lfw/lfw.pdf.
|
21 |
MARTINEZ A R, BENAVENTE R. The AR face database. Computer Vision, 1998, 24, 318- 323.
|
22 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60(6): 84- 90.
doi: 10.1145/3065386
|
23 |
|
24 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
25 |
|
26 |
ALANSARI M, HAY O A, JAVED S, et al. GhostFaceNets: lightweight face recognition model from cheap operations. IEEE Access, 2023, 11, 35429- 35446.
|
27 |
WENG R, LU J, TAN Y P. Robust point set matching for partial face recognition. IEEE Transactions Image Process, 2016, 25(3): 1163- 1176.
|
28 |
YANG J, LUO L, QIAN J J, et al. Nuclear norm based matrix regression with applications to face recognition with occlusion and illumination changes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(1): 156- 171.
|
29 |
WAN W T, CHEN J S. Occlusion robust face recognition based on mask learning[C]//Proceedings of 2017 IEEE International Conference on Image Processing. Washington D. C., USA: IEEE Press, 2017: 3795-3799.
|
30 |
CHEN W P, GAO Y S. Recognizing partially occluded faces from a single sample per class using string-based matching[M]. Berlin, Germany: Springer, 2010.
|
31 |
MCLAUGHLIN N, JI-MING, CROOKES D. Largest matching areas for illumination and occlusion robust face recognition. IEEE Transactions on Cybernetics, 2017, 47(3): 796- 808.
|