作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2011, Vol. 37 ›› Issue (4): 178-180.

• 人工智能及识别技术 • 上一篇    下一篇

基于FDCT的视频人脸识别方法

郭建华a,赵怀勋a,陈晓楠b   

  1. (武警工程学院 a. 通信工程系;b. 电子技术系,西安 710086)
  • 出版日期:2011-02-20 发布日期:2011-02-17
  • 作者简介:郭建华(1983-),女,硕士研究生,主研方向:图像处理,人脸识别;赵怀勋,教授、硕士;陈晓楠,硕士研究生
  • 基金资助:
    国家自然科学基金资助项目(60842006)

Video Face Recognition Method Based on Fast Discrete Curvelet Transform

GUO Jian-hua a, ZHAO Huai-xun a, CHEN Xiao-nan b   

  1. (a. Dept. of Communication Engineering; b. Dept. of Electronics Technology, College of Armed Police Force Engineering, Xi’an 710086, China)
  • Online:2011-02-20 Published:2011-02-17

摘要: 为克服在图像上直接使用快速离散Curvelet变换不能完全提取有用特征信息的缺点,利用HSI颜色空间各通道互不相关的特点,结合快速离散Curvelet变换,提出一种新的视频人脸识别方法,并设计一个视频人脸识别系统以证明该方法的有效性。实验结果表明,该系统只需2 s (35帧/s)即可识别人脸,正确识别率达99.5%,对表情有一定的鲁棒性,可在

关键词: 视频人脸识别, 快速离散Curvelet变换, 最小二乘支持向量机, HSI颜色模型, 特征融合

Abstract: In order to overcome the shortcomings in extracting effective features incompletely with Fast Discrete Curvelet Transform(FDCT) on the images, this paper proposes a new video face recognition method, which takes the advantages of decorrelated HSI color space channels and FDCT. A video face recognition system is designed to prove the validity of the method. Experimental result proves that it only needs 2 seconds (35 f/s) to recognize faces, its recognition accuracy is around 99.5%, and it is robust to expressions, and it can be applied in intelligent terminal.

Key words: video face recognition, Fast Discrete Curvelet Transform(FDCT), LS-SVM, HSI color model, feature fusing

中图分类号: