作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2012, Vol. 38 ›› Issue (19): 45-48. doi: 10.3969/j.issn.1000-3428.2012.19.011

• 软件技术与数据库 • 上一篇    下一篇

基于模拟退火的Map Reduce调度算法

遆 鸣,陈俊杰,强 彦   

  1. (太原理工大学计算机科学与技术学院,太原 030024)
  • 收稿日期:2011-11-21 出版日期:2012-10-05 发布日期:2012-09-29
  • 作者简介:遆 鸣(1986-),女,硕士研究生,主研方向:数据库技术,智能信息处理;陈俊杰(通讯作者),教授、博士生导师;强 彦, 副教授、博士
  • 基金资助:
    山西省国际科技合作计划基金资助项目(2009081022);山西省科技基础条件平台建设基金资助项目(2010091103-0101);山西省青年科学基金资助项目(2009021017-3)

Map Reduce Scheduling Algorithm Based on Simulated Annealing

TI Ming, CHEN Jun-jie, QIANG Yan   

  1. (College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China)
  • Received:2011-11-21 Online:2012-10-05 Published:2012-09-29

摘要: 在计算能力作业调度算法的基础上,提出一种基于模拟退火的Map Reduce作业调度算法。利用带记忆功能的模拟退火算法选择最优作业,从而避免陷入局部最优解。在Hadoop平台上的实验结果表明,该算法能减少所有作业的运行时间以及每个作业的等待响应时间,具有较高的作业调度效率及用户满意度。

关键词: 云计算, 作业调度, Hadoop平台, 模拟退火, Map Reduce模型, 局部最优

Abstract: Based on the capacity job scheduling algorithm, this paper proposes a Map Reduce job scheduling algorithm based on Simulated Annealing(SA). It uses the SA algorithm with remember function to choose the best job, and avoids losing into local optimal solution. Experimental results on Hadoop platform show that the algorithm can reduce the total time of the jobs and the waiting time of each job, and it also has high job scheduling efficiency and satisfaction of customs.

Key words: cloud computing, job scheduling, Hadoop platform, Simulated Annealing(SA), Map Reduce model, local optimum

中图分类号: