[1] BOLIN J, YANG M K.Cloud computing:cost, security, and performance[C]//Proceedings of 2018 ACMSE Conference.New York, USA:ACM Press, 2018:1. [2] MASDARI M, NABAVI S S, AHMADI V.An overview of virtual machine placement schemes in cloud computing[J].Journal of Network and Computer Applications, 2016, 66:106-127. [3] MASDARI M, SALEHI F, JALALI M, et al.A survey of PSO-based scheduling algorithms in cloud computing[J].Journal of Network and Systems Management, 2017, 25(1):122-158. [4] SINGH S, CHANA I.A survey on resource scheduling in cloud computing:issues and challenges[J].Journal of Grid Computing, 2016, 14(2):217-264. [5] SHAO G L, CHEN J M.A load balancing strategy based on data correlation in cloud computing[C]//Proceedings of the 9th International Conference on Utility and Cloud Computing.New York, USA:ACM Press, 2016:364-368. [6] MASDARI M, KHOSHNEVIS A.A survey and classifi-cation of the workload forecasting methods in cloud computing[J].Cluster Computing, 2020, 23(4):2399-2424. [7] KHAIRALLA M A, NING X.Financial time series forecasting using hybridized support vector machines and ARIMA models[C]//Proceedings of 2017 International Conference on Wireless Communications, Networking and Applications.New York, USA:ACM Press, 2017:94-98. [8] BI J, ZHANG L B, YUAN H T, et al.Hybrid task prediction based on wavelet decomposition and ARIMA model in cloud data center[C]//Proceedings of IEEE International Conference on Networking, Sensing and Control.Washington D.C., USA:IEEE Press, 2018:1-6. [9] LIU C H, LIU C C, SHANG Y L, et al.An adaptive prediction approach based on workload pattern discrimination in the cloud[J].Journal of Network and Computer Applications, 2017, 80:35-44. [10] ZHONG W, ZHUANG Y, SUN J, et al.The cloud computing load forecasting algorithm based on wavelet support vector machine[C]//Proceedings of the Australasian Computer Science Week Multiconference.New York, USA:ACM Press, 2017:1-5. [11] GUPTA S, DILEEP A D, GONSALVES T A.Fractional difference based hybrid model for resource prediction in cloud network[C]//Proceedings of the 15th International Conference on Network, Communication and Computing.New York, USA:ACM Press, 2016:93-97. [12] ZHANG Q C, YANG L T, YAN Z, et al.An efficient deep learning model to predict cloud workload for industry informatics[J].IEEE Transactions on Industrial Informatics, 2018, 14(7):3170-3178. [13] ZHANG W S, LI B, ZHAO D H, et al.Workload prediction for cloud cluster using a recurrent neural network[C]//Proceedings of International Conference on Identification, Information and Knowledge in the Internet of Things.Washington D.C., USA:IEEE Press, 2016:104-109. [14] SUDHAKAR C, KUMAR A R, SIDDARTHA N, et al.Workload prediction using ARIMA statistical model and long short-term memory recurrent neural networks[C]//Proceedings of International Conference on Computing, Power and Communication Technologies.Washington D.C., USA:IEEE Press, 2018:600-604. [15] ZHANG Z H, ZHU W, ZHONG W, et al.Load forecasting model of mobile cloud computing based on glowworm swarm optimization LSTM network[C]//Proceedings of the 7th International Conference on Information Technology:IoT and Smart City.Washington D.C., USA:IEEE Press, 2019:113-119. [16] 林涛, 冯竞凯, 郝章肖, 等.基于组合预测模型的云计算资源负载预测研究[J].计算机工程与科学, 2020, 42(7):1168-1173. LIN T, FENG J K, HAO Z X, et al.Cloud computing resource load prediction based on combined prediction model[J].Computer Engineering & Science, 2020, 42(7):1168-1173.(in Chinese) [17] CHEN L, YU H H, TONG L, et al.Research on load forecasting method of distribution transformer based on deep learning[C]//Proceedings of the 7th IEEE International Conference on Cyber Security and Cloud Computing.Washington D.C., USA:IEEE Press, 2020:228-233. [18] TANG D D, LI C, JI X H, et al.Power load forecasting using a Refined LSTM[C]//Proceedings of the 11th International Conference on Machine Learning and Computing.Washington D.C., USA:IEEE Press, 2019:104-108. [19] YUAN C M, XIU T, LOU T Y.Probabilistic long-term load forecasting based on Stacked LSTM[C]//Proceedings of the 4th International Conference on Mathematics and Artificial Intelligence.Washington D.C., USA:IEEE Press, 2019:80-84. [20] GUO J Y, WANG Z J, CHEN H W.On-line multi-step prediction of short term traffic flow based on GRU neural network[C]//Proceedings of the 2nd International Conference on Intelligent Information Processing.Washington D.C., USA:IEEE Press, 2017:1-6. [21] CHEN Y T, KANG Y F, CHEN Y X, et al.Probabilistic forecasting with temporal convolutional neural network[J].Neurocomputing, 2020, 399:491-501. [22] SHETTY J, SHOBHA G.An ensemble of automatic algorithms for forecasting resource utilization in cloud[C]//Proceedings of Future Technologies Conference.Washington D.C., USA:IEEE Press, 2016:301-306. [23] DEVIAENE M, TESTELMANS D, BORZÉE P, et al.Feature selection algorithm based on random forest applied to sleep apnea detection[C]//Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society.Washington D.C., USA:IEEE Press, 2019:2580-2583. [24] CHENG Y, ANWAR A, DUAN X J.Analyzing Alibaba's co-located datacenter workloads[C]//Proceedings of IEEE International Conference on Big Data.Washington D.C., USA:IEEE Press, 2018:292-297. [25] 蔡亮, 周泓岑, 白恒, 等.基于多层BiLSTM和改进粒子群算法的应用负载预测方法[J].浙江大学学报(工学版), 2020, 54(12):2414-2422. CAI L, ZHOU H C, BAI H, et al.Application load forecasting method based on multi-layer bidirectional LSTM and improved PSO algorithm[J].Journal of Zhejiang University(Engineering Science), 2020, 54(12):2414-2422.(in Chinese) [26] 董兰芳, 张军挺.基于深度学习与随机森林的人脸年龄与性别分类研究[J].计算机工程, 2018, 44(5):246-251. DONG L F, ZHANG J T.Research on face age and gender classification based on deep learning and random forest[J].Computer Engineering, 2018, 44(5):246-251.(in Chinese) |