1 |
DIPU KABIR H M, KHOSRAVI A, MONDAL S K, et al. Uncertainty-aware decisions in cloud computing. ACM Computing Surveys, 2022, 54 (4): 1- 30.
|
2 |
GAO J C, WANG H Y, SHEN H Y. Machine learning based workload prediction in cloud computing[C]//Proceedings of the 29th International Conference on Computer Communications and Networks. Washington D. C., USA: IEEE Press, 2020: 1-9.
|
3 |
AGHDASHI A, MIRTAHERI S L. Novel dynamic load balancing algorithm for cloud-based big data analytics. The Journal of Supercomputing, 2022, 78 (3): 4131- 4156.
doi: 10.1007/s11227-021-04024-8
|
4 |
ALI AL-NASSAR B, AL-NSOUR S N, ALI RABABAH K. Advantages and factors affecting the adoption of cloud computing[C]//Proceedings of the 10th International Conference on Software and Information Engineering. New York, USA: ACM Press, 2021: 53-56.
|
5 |
TANG N, ZHANG H T. A strategy of cloud resource load balancing enhancement based on ant colony optimization[C]//Proceedings of the 4th High Performance Computing and Cluster Technologies Conference and the 3rd International Conference on Big Data and Artificial Intelligence. New York, USA: ACM Press, 2020: 172-178.
|
6 |
MASDARI M, KHOSHNEVIS A. A survey and classification of the workload forecasting methods in cloud computing. Cluster Computing, 2019, 23 (4): 1- 26.
|
7 |
RAHIMIKHANGHAH A, TAJKEY M, REZAZADEH B, et al. Resource scheduling methods in cloud and fog computing environments: a systematic literature review. Cluster Computing, 2022, 25 (2): 911- 945.
doi: 10.1007/s10586-021-03467-1
|
8 |
HU R D, JIANG J F, LIU G M, et al. CPU load prediction using support vector regression and Kalman smoother for cloud[C]//Proceedings of the 33rd IEEE International Conference on Distributed Computing Systems Workshops. Washington D. C., USA: IEEE Press, 2013: 88-92.
|
9 |
FARAHNAKIAN F, LILJEBERG P, PLOSILA J. LiRCUP: linear regression based CPU usage prediction algorithm for live migration of virtual machines in data centers[C]//Proceedings of the 39th Euromicro Conference on Software Engineering and Advanced Applications. Santander, Spain: IEEE Press, 2013: 357-364.
|
10 |
BI J, ZHANG L B, YUAN H T, et al. Hybrid task prediction based on wavelet decomposition and ARIMA model in cloud data center[C]//Proceedings of the 15th IEEE International Conference on Networking, Sensing and Control. Washington D. C., USA: IEEE Press, 2018: 1-6.
|
11 |
石瑾挺, 孙洁香, 邬惠峰. 基于指数平滑的云服务器请求量集成预测模型. 计算机工程与设计, 2020, 41 (2): 432- 439.
doi: 10.16208/j.issn1000-7024.2020.02.021
|
|
SHI J T, SUN J X, WU H F. Ensemble prediction model based on exponential smoothing for cloud server request quantity. Computer Engineering and Design, 2020, 41 (2): 432- 439.
doi: 10.16208/j.issn1000-7024.2020.02.021
|
12 |
王电钢, 黄林, 常健, 等. 基于ARIMA和CART的负载预测模型. 深圳大学学报(理工版), 2019, 36 (3): 245- 251.
URL
|
|
WANG D G, HUANG L, CHANG J, et al. Load forecasting model based on ARIMA and CART. Journal of Shenzhen University(Science and Engineering), 2019, 36 (3): 245- 251.
URL
|
13 |
DUGGAN M, MASON K, DUGGAN J, et al. Predicting host CPU utilization in cloud computing using recurrent neural networks[C]//Proceedings of the 12th International Conference on Internet Technology and Secured Transactions. Washington D. C., USA: IEEE Press, 2018: 67-72.
|
14 |
YADAV M P, PAL N, YADAV D K. Workload prediction over cloud server using time series data[C]//Proceedings of the 11th International Conference on Cloud Computing, Data Science & Engineering. Washington D. C., USA: IEEE Press, 2021: 267-272.
|
15 |
谢晓兰, 梁荣华. 基于PF-LSTM的云资源预测. 计算机工程与设计, 2021, 42 (10): 2823- 2829.
URL
|
|
XIE X L, LIANG R H. Cloud resource prediction based on PF-LSTM. Computer Engineering and Design, 2021, 42 (10): 2823- 2829.
URL
|
16 |
张宗华, 赵京湘, 卢享, 等. 基于遗传算法的BP神经网络在电力负载预测中的应用. 计算机工程, 2017, 43 (10): 277-282, 288.
doi: 10.3969/j.issn.1000-3428.2017.10.046
|
|
ZHANG Z H, ZHAO J X, LU X, et al. Application of BP neural network based on genetic algorithm in power load forecasting. Computer Engineering, 2017, 43 (10): 277-282, 288.
doi: 10.3969/j.issn.1000-3428.2017.10.046
|
17 |
林涛, 冯竞凯, 郝章肖, 等. 基于组合预测模型的云计算资源负载预测研究. 计算机工程与科学, 2020, 42 (7): 1168- 1173.
doi: 10.3969/j.issn.1007-130X.2020.07.004
|
|
LIN T, FENG J K, HAO Z X, et al. Cloud computing resource load prediction based on combined prediction model. Computer Engineering and Science, 2020, 42 (7): 1168- 1173.
doi: 10.3969/j.issn.1007-130X.2020.07.004
|
18 |
PATEL E, KUSHWAHA D S. A hybrid CNN-LSTM model for predicting server load in cloud computing. The Journal of Supercomputing, 2022, 78 (8): 1- 30.
|
19 |
钱声攀, 于洋, 翟天一, 等. 基于深度学习的主机负载在线预测模型研究. 计算机工程, 2021, 47 (9): 84- 89.
URL
|
|
QIAN S P, YU Y, ZHAI T Y, et al. Research on online prediction model of host load based on deep learning. Computer Engineering, 2021, 47 (9): 84- 89.
URL
|
20 |
YANG Z J, CHEN L, ZHANG H, et al. Residual connection based TPA-LSTM networks for cluster node CPU load prediction[C]//Proceedings of IEEE International Conference on Big Data. Washington D. C., USA: IEEE Press, 2022: 5311-5316.
|
21 |
贺小伟, 徐靖杰, 王宾, 等. 基于GRU-LSTM组合模型的云计算资源负载预测研究. 计算机工程, 2022, 48 (5): 11-17, 34.
URL
|
|
HE X W, XU J J, WANG B, et al. Research on cloud computing resource load forecasting based on GRU-LSTM combination model. Computer Engineering, 2022, 48 (5): 11-17, 34.
URL
|
22 |
姬莉霞, 赵耀, 马郑祎, 等. 基于iForest-BiLSTM-Attention的数据库负载预测方法. 郑州大学学报(理学版), 2022, 54 (6): 66- 73.
URL
|
|
JI L X, ZHAO Y, MA Z Y, et al. Database workload prediction method based on iForest-BiLSTM-Attention. Journal of Zhengzhou University(Natural Science Edition), 2022, 54 (6): 66- 73.
URL
|
23 |
SHU W J, ZENG F P, LING Z, et al. Resource demand prediction of cloud workloads using an attention-based GRU model[C]//Proceedings of the 17th International Conference on Mobility, Sensing and Networking. Washington D. C., USA: IEEE Press, 2022: 428-437.
|
24 |
DIAKOULAKI D, MAVROTAS G, PAPAYANNAKIS L. Determining objective weights in multiple criteria problems: the critic method. Computers & Operations Research, 1995, 22 (7): 763- 770.
|
25 |
CHENG Y, ANWAR A, DUAN X J. Analyzing alibaba's co-located datacenter workloads[C]//Proceedings of IEEE International Conference on Big Data. Washington D. C., USA: IEEE Press, 2019: 292-297.
|