1 |
DANG L M, PIRAN M J, HAN D, et al. A survey on Internet of Things and cloud computing for healthcare. Electronics, 2019, 8(7): 768.
doi: 10.3390/electronics8070768
|
2 |
MASDARI M, NABAVI S S, AHMADI V. An overview of virtual machine placement schemes in cloud computing. Journal of Network and Computer Applications, 2016, 66, 106- 127.
doi: 10.1016/j.jnca.2016.01.011
|
3 |
MORENO-VOZMEDIANO R, MONTERO R S, HUEDO E, et al. Efficient resource provisioning for elastic cloud services based on machine learning techniques. Journal of Cloud Computing: Advances, Systems and Applications, 2019, 8(1): 128.
|
4 |
COUTINHO E F, REGO P A L. Elasticity in cloud computing: a survey. Annals of Telecommunications, 2015, 70(7): 289- 309.
|
5 |
LORIDO-BOTRAN T, MIGUEL-ALONSO J, LOZANO J A. A review of auto-scaling techniques for elastic applications in cloud environments. Journal of Grid Computing, 2014, 12(4): 559- 592.
doi: 10.1007/s10723-014-9314-7
|
6 |
GUPTA I, MITTAL H, RIKHARI D, et al. MLRM: a multiple linear regression based model for average temperature prediction of a day[EB/OL]. [2022-10-11]. https://arxiv.org/abs/2203.05835.
|
7 |
SHASTRI S. A study on exponential smoothing method for forecasting. International Journal of Computer Sciences and Engineering, 2018, 6(4): 482- 485.
doi: 10.26438/ijcse/v6i4.482485
|
8 |
SATRIO C B A, DARMAWAN W, NADIA B U, et al. Time series analysis and forecasting of coronavirus disease in Indonesia using ARIMA model and PROPHET. Procedia Computer Science, 2021, 179, 524- 532.
doi: 10.1016/j.procs.2021.01.036
|
9 |
CALHEIROS R N, MASOUMI E, RANJAN R, et al. Workload prediction using ARIMA model and its impact on cloud applications'QoS. IEEE Transactions on Cloud Computing, 2015, 3(4): 449- 458.
doi: 10.1109/TCC.2014.2350475
|
10 |
SHERSTINSKY A. Fundamentals of Recurrent Neural Network(RNN) and Long Short-Term Memory(LSTM) network. Physica D: Nonlinear Phenomena, 2020, 404, 132306.
doi: 10.1016/j.physd.2019.132306
|
11 |
HOSSAIN M S, MAHMOOD H. Short-term load forecasting using an LSTM neural network[C]//Proceedings of 2020 IEEE Power and Energy Conference at Illinois. Washington D. C., USA: IEEE Press, 2020: 1-6.
|
12 |
JANARDHANAN D, BARRETT E. CPU workload forecasting of machines in data centers using LSTM recurrent neural networks and ARIMA models[C]//Proceedings of the 12th International Conference for Internet Technology and Secured Transactions. Washington D. C., USA: IEEE Press, 2017: 55-60.
|
13 |
ZHOU X X, XU J J, ZENG P, et al. Air pollutant concentration prediction based on GRU method. Journal of Physics: Conference Series, 2019, 1168, 032058.
doi: 10.1088/1742-6596/1168/3/032058
|
14 |
LI X H, ZHUANG W J, ZHANG H. Short-term power load forecasting based on gate recurrent unit network and cloud computing platform[C]//Proceedings of the 4th International Conference on Computer Science and Application Engineering. New York, USA: ACM Press, 2020: 1-6.
|
15 |
KAWAKAMI K. Supervised sequence labelling with recurrent neural networks[D]. Munich, Germany: Technical University of Munich, 2008.
|
16 |
|
17 |
HOSEINZADE E, HARATIZADEH S. CNNpred: CNN-based stock market prediction using a diverse set of variables. Expert Systems with Applications, 2019, 129, 273- 285.
doi: 10.1016/j.eswa.2019.03.029
|
18 |
HEWAGE P, BEHERA A, TROVATI M, et al. Temporal convolutional neural network for an effective weather forecasting using time-series data from the local weather station. Soft Computing, 2020, 24(21): 16453- 16482.
doi: 10.1007/s00500-020-04954-0
|
19 |
TANG G B, MÜLLER M, GONZALES A R, et al. Why self-attention?A targeted evaluation of neural machine translation architectures[C]//Proceedings of 2018 Conference on Empirical Methods in Natural Language Processing. Philadelphia, USA: Association for Computational Linguistics, 2018: 4263-4272.
|
20 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 6000-6010.
|
21 |
ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: beyond efficient Transformer for long sequence time-series forecasting[C]//Proceedings of AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2021: 11106-11115.
|
22 |
WANG H K, SONG K, CHENG Y. A hybrid forecasting model based on CNN and informer for short-term wind power. Frontiers in Energy Research, 2022, 9, 788320.
doi: 10.3389/fenrg.2021.788320
|
23 |
GUO L, LI R Z, JIANG B. A data-driven long time-series electrical line trip fault prediction method using an improved stacked-informer network. Sensors, 2021, 21(13): 4466.
doi: 10.3390/s21134466
|
24 |
关晓蔷, 王文剑, 庞继芳, 等. 基于空间变换的随机森林算法. 计算机研究与发展, 2021, 58(11): 2485- 2499.
|
|
GUAN X Q, WANG W J, PANG J F, et al. Space transformation based random forest algorithm. Journal of Computer Research and Development, 2021, 58(11): 2485- 2499.
|
25 |
SPEISER J L, MILLER M E, TOOZE J, et al. A comparison of random forest variable selection methods for classification prediction modeling. Expert Systems with Applications, 2019, 134, 93- 101.
|