摘要: 主分量分析是一种线性特征抽取方法,被广泛地应用在人脸等图像识别领域。但传统的PCA都以总体散布矩阵作为产生矩阵,并且要将作为图像的矩阵转换为列向量进行计算。该文给出了一种利用图像矩阵直接计算的二维PCA,以类间散布矩阵的本征向量作为投影方向,取得了比利用总体散布矩阵更好的识别效果,并且特征抽取速度更快。在ORL和NUSTFDBⅡ标准人脸库上的实验验证了该方法的有效性。
                                                        
                                                        关键词: 
                               																				                                       主分量分析, 
	                                                                        											                                       特征抽取, 
	                                                                        											                                       本征脸, 
	                                                                        											                                       人脸识别 
	                                                                                                    
                                                                                    Abstract: Principal component analysis (PCA) is an important method widely used in images data compression and feature extraction. But conventional PCA usually uses total scatter matrix as a generation matrix, and two-dimension (2D) image matrices must be transformed into vectors. This paper gives a 2D-PCA, which uses original image matrices to compute between-class covariance matrix and its eigenvectors are derived for images feature extraction. The experiments on ORL and NUSTFDBⅡface-databases indicate that the recognition rates are higher than PCA and 2D-PCA using total scatter matrix, and the speed of feature extraction is faster.
                                                        	                            Key words: 
	                            																				                                       Principal component analysis (PCA), 
	                                    	                            											                                       Feature extraction, 
	                                    	                            											                                       Eigenfaces, 
	                                    	                            											                                       Face recognition 
	                                    	                                                            
                                                        
                            
                                                        	
								
								中图分类号: 
								 
								
								
								                            
                            
                            
                                
                                    
                                
                                
                                    
                                        															张生亮;陈伏兵;谢永华;杨静宇. 基于类间散布矩阵的二维主分量分析[J]. 计算机工程, 2006, 32(11): 44-46.	
															                                                                                                        	                                                                                                                      ZHANG Shengliang; CHEN Fubing; XIE Yonghua; YANG Jingyu. A Two-dimensional PCA Based on Between-class Scatter Matrix[J]. Computer Engineering, 2006, 32(11): 44-46.