[1] JACOB N,HEYSZL J,SIGL G,et al.Hardware Trojans:current challenges and approaches[J].IET Computers & Digital Techniques,2014,8(6):264-273. [2] HUANG Zhao,WANG Quan,YANG Pengfei.Hardware Trojan:research progress and new trends on key problems[J].Chinese Journal of Computer,2019,42(5):993-1017.(in Chinese)黄钊,王泉,杨鹏飞.硬件木马:关键问题研究进展及新动向[J].计算机学报,2019,42(5):993-1017. [3] YIN Yongsheng,WANG Tao,CHEN Hongmei,et al.Study on hardware Trojan technology[J].Microelectronics,2017,47(2):233-238.(in Chinese)尹勇生,汪涛,陈红梅,等.硬件木马技术研究进展[J].微电子学,2017,47(2):233-238. [4] INOUE T,HASEGAWA K,YANAGISAWA M,et al.Designing hardware Trojans and their detection based on a SVM-based approach[C]//Proceedings of 2017 IEEE 12th International Conference on ASIC.Washington D.C.,USA:IEEE Press,2017:811-814. [5] ZHAO Yiqiang,LIU Shenfeng,HE Jiaji,et al.Hardware Trojan detection technology based on self-organizing competition neural network[J].Journal of Huazhong University of Science and Technology(Nature Science Edition),2016,44(2):51-55.(in Chinese)赵毅强,刘沈丰,何家骥,等.基于自组织竞争神经网络的硬件木马检测方法[J].华中科技大学学报(自然科学版),2016,44(2):51-55. [6] VAIKUNTAPU R,BHARGAVA L,SAHULA V.Golden IC free methodology for hardware Trojan detection using symmetric path delays[C]//Proceedings of the 20th International Symposium on VLSI Design and Test.Washington D.C.,USA:IEEE Press,2016:1-2. [7] SU Jing,ZHAO Yiqiang,HE Jiaji,et al.Hardware Trojan detection based on euclidian distance of PCA on side-channel[J].Microelectronics & Computer,2015,32(1):1-4,10.(in Chinese)苏静,赵毅强,何家骥,等.旁路信号主成分分析的欧式距离硬件木马检测[J].微电子学与计算机,2015,32(1):1-4,10. [8] SONG Chenchen.Hardware Trojan detection technology based on side channel analysis[D].Harbin:Harbin Institute of Technology,2016.(in Chinese)宋晨晨.基于侧信道分析的硬件木马检测技术[D].哈尔滨:哈尔滨工业大学,2016. [9] GAO Zhenbin,BAI Xue,YANG Song,et al.Hardware Trojan detection method based on hidden markov model[J].Computer Engineering,2016,42(9):126-131.(in Chinese)高振斌,白雪,杨松,等.基于隐马尔可夫模型的硬件木马检测方法[J].计算机工程,2016,42(9):126-131. [10] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780. [11] LI Heng,ZHAO Yiqiang,YANG Ruixia,et al.Hardware Trojan detection optimization based on wavelet de-noising data preprocessing[J].Computer Engineering and Applications,2017,53(1):49-53.(in Chinese)李衡,赵毅强,杨瑞霞,等.基于小波降噪数据预处理的硬件木马检测优化[J].计算机工程与应用,2017,53(1):49-53. [12] NITISH S,GEOFFREY H,ALEX K,et al.Dropout:a simple way to prevent neural networks from overfitting[J].Journal of Machine Learning Research,2014,15:1929-1958. [13] NHITA F,SAEPUDIN D,ADIWIJAYA,et al.Comparative study of moving average on rainfall time series data for rainfall forecasting based on evolving neural network classifier[C]//Proceedings of the 3rd International Symposium on Computational and Business Intelligence.Washington D.C.,USA:IEEE Press,2015:112-116. [14] AN Wangpeng,WANG Haoqian,ZHANG Yulun,et al.Exponential decay sine wave learning rate for fast deep neural network training[C]//Proceedings of 2017 IEEE Visual Communications and Image Processing.Washington D.C.,USA:IEEE Press,2017:1-4. [15] KULKARNI A,PINO Y,MOHSENIN T.SVM-based real-time hardware Trojan detection for many-core platform[C]//Proceedings of the 17th International Symposium on Quality Electronic Design.Washington D.C.,USA:IEEE Press,2016:203-206. [16] LI Jun,NI Lin,CHEN Jihua,et al.A novel hardware Trojan detection based on BP neural network[C]//Proceedings of the 2nd IEEE International Conference on Computer and Communications.Washington D.C.,USA:IEEE Press 2016:2790-2794. [17] HASEGAWA K,YANAGISAWA M,TOGAWA N.Trojan-feature extraction at gate-level netlists and its application to hardware-Trojan detection using random forest classifier[C]//Proceedings of 2017 IEEE International Symposium on Circuits and Systems.Washington D.C.,USA:IEEE Press,2017:1-4. [18] QI Xiangnian.Support vector machines and application research overview[J].Computer Engineering,2004,30(10):6-9.(in Chinese)祁亨年.支持向量机及其应用研究综述[J].计算机工程,2004,30(10):6-9. [19] RUMELHART D E,HINTON G E,WILLIAMS R J.Learning representations by back-propagating errors[J].Nature,1986,323(9):533-536. [20] ZHANG Lei,YIN Mengjie,WANG Jianxin,et al.Hardware Trojan detection method based on random forest[J].Microelectronics & Computer,2019,36(2):83-87.(in Chinese)张磊,殷梦婕,王建新,等.基于随机森林的硬件木马检测方法[J].微电子学与计算机,2019,36(2):83-87. [21] CHEN T Q,GUESTRIN C.XGBoost:a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2016:785-794. [22] SONG Guoqin,LIU Bin.The establishment and application of drop-out-index of MOOCs based on XGBoost feature selection[J].Journal of University of Electronic Science and Technology of China,2018,47(6):921-926.(in Chinese)宋国琴,刘斌.基于XGBoost特征选择的幕课翘课指数建立及应用[J].电子科技大学学报,2018,47(6):921-926. |