作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2019, Vol. 45 ›› Issue (2): 270-277. doi: 10.19678/j.issn.1000-3428.0049831

• 多媒体技术及应用 • 上一篇    下一篇

多尺度空间金字塔池化PCANet的行人检测

夏胡云,叶学义,罗宵晗,王鹏   

  1. 杭州电子科技大学 模式识别与信息安全实验室,杭州 310018
  • 收稿日期:2017-12-25 出版日期:2019-02-15 发布日期:2019-02-15
  • 作者简介:夏胡云(1994—),男,硕士研究生,主研方向为深度学习、计算机视觉;叶学义,副教授、博士;罗宵晗、王鹏,硕士研究生。
  • 基金资助:

    国家自然科学基金(60802047,60702018)。

Pedestrian Detection Using Multi-scale Principal Component Analysis Network of Spatial Pyramid Pooling

XIA Huyun,YE Xueyi,LUO Xiaohan,WANG Peng   

  1. Lab of Pattern Recognition and Information Security,Hangzhou Dianzi Universtiy,Hangzhou 310018,China
  • Received:2017-12-25 Online:2019-02-15 Published:2019-02-15

摘要:

针对非理想条件下行人检测的性能和效率问题,提出多尺度空间金字塔PCANet。将空间金字塔作为网络的特征池化层,通过分层池化特征的方式获得图像的显著性特征,并将底层特征和高层特征级联以获得样本的多尺度特征的向量表示,输入SVM分类器。在INRIA和NICTA数据库中,与HOG、CNN等算法进行行人检测对比实验,结果表明,该算法有更高的正确检测率、更低的漏检率和误检率。

关键词: 行人检测, 深度学习架构, 主成分分析网络, 多尺度特征, 空间金字塔池化, 显著性特征

Abstract:

Pedestrian detection is easily affected by non-ideal factors such as complex background,shooting angle and diversity of human body posture in natural environment.To solve this problem,this paper proposes a Multi-scale Principal Component Analysis Network of Spatial Pyramid Pooling (MS-PCANet-SPP).The feature pooling layer using spatial pyramid pooling method extract the saliency features of the image.The multi-scale features of the input samples can be obtained by cascading the high-level and low-level features,which is input to the SVM classifer.The comparative experiments are performed in the INRIA and NICTA databases.Experimental results show that,compared with HOG,CNN and other algorithms,MS-PCANet-SPP has a higher detection rate,a lower miss rate,and a lower false positive rate.

Key words: pedestrian detection, deep learning framework, Principal Component Analysis Network(PCANet), multi-scale feature, spatial pyramid pooling, saliency feature

中图分类号: