[1] JUNG C, TAUBERT D, SCHINDLER D.The temporal variability of global wind energy-Long-term trends and inter-annual variability[J].Energy Conversion and Management, 2019, 188:462-472. [2] ZHANG Y C, LE J, LIAO X B, et al.A novel combination forecasting model for wind power integrating least square support vector machine, deep belief network, singular spectrum analysis and locality-sensitive hashing[J].Energy, 2019, 168:558-572. [3] 马苗苗, 邵黎阳, 刘向杰.分布式预测控制在微电网协调控制中的应用[J].吉林大学学报(工学版), 2020, 50(6):2258-2265. MA M M, SHAO L Y, LIU X J.Application of distributed predictive control in coordinated control of microgrid[J].Journal of Jilin University (Engineering and Technology Edition), 2020, 50(6):2258-2265.(in Chinese) [4] TASCIKARAOGLU A, UZUNOGLU M.A review of combined approaches for prediction of short-term wind speed and power[J].Renewable and Sustainable Energy Reviews, 2014, 34:243-254. [5] LAHOUAR A, SLAMA J B H.Hour-ahead wind power forecast based on random forests[J].Renewable Energy, 2017, 109:529-541. [6] AMBACH D, SCHMID W.A new high-dimensional time series approach for wind speed, wind direction and air pressure forecasting[J].Energy, 2017, 135:833-850. [7] HU Y L, CHEN L.A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic ELM and differential evolution algorithm[J].Energy Conversion and Management, 2018, 173:123-142. [8] ZIEL F, CROONENBROECK C, AMBACH D.Forecasting wind power-modeling periodic and non-linear effects under conditional heteroscedasticity[J].Applied Energy, 2016, 177:285-297. [9] MANOBEL B, SEHNKE F, LAZZÚS J A, et al.Wind turbine power curve modeling based on Gaussian processes and artificial neural networks[J].Renewable Energy, 2018, 125:1015-1020. [10] LAMSAL D, SREERAM V, MISHRA Y, et al.Achieving a minimum power fluctuation rate in wind and photovoltaic output power using discrete Kalman filter based on weighted average approach[J].IET Renewable Power Generation, 2018, 12(6):633-638. [11] KOO J, HAN G D, CHOI H J, et al.Wind-speed prediction and analysis based on geological and distance variables using an artificial neural network:a case study in South Korea[J].Energy, 2015, 93:1296-1302. [12] ZHANG C, ZHOU J Z, LI C S, et al.A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting[J].Energy Conversion and Management, 2017, 143:360-376. [13] BARMAN M, DEV CHOUDHURY N B, SUTRADHAR S.A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India[J].Energy, 2018, 145:710-720. [14] ZHOU M, WANG B, GUO S D, et al.Multi-objective prediction intervals for wind power forecast based on deep neural networks[J].Information Sciences, 2021, 550:207-220. [15] SADAEI H J, DE LIMA E SILVA P C, GUIMARÃES F G, et al.Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series[J].Energy, 2019, 175:365-377. [16] KHODAYAR M, KAYNAK O, KHODAYAR M E.Rough deep neural architecture for short-term wind speed forecasting[J].IEEE Transactions on Industrial Informatics, 2017, 13(6):2770-2779. [17] WANG K J, QI X X, LIU H D, et al.Deep belief network based k-means cluster approach for short-term wind power forecasting[J].Energy, 2018, 165:840-852. [18] CHOI J, LEE S.Short-term wind power forecast using hourly LSTM technique[J].The Transactions of the Korean Institute of Electrical Engineers, 2020, 69(6):759-764. [19] WANG J Z, HENG J N, XIAO L Y, et al.Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting[J].Energy, 2017, 125:591-613. [20] LI S, WANG P, GOEL L.Wind power forecasting using neural network ensembles with feature selection[J].IEEE Transactions on Sustainable Energy, 2015, 6(4):1447-1456. [21] LEE D, BALDICK R.Short-term wind power ensemble prediction based on Gaussian processes and neural networks[J].IEEE Transactions on Smart Grid, 2014, 5(1):501-510. [22] WANG S X, ZHANG N, WU L, et al.Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method[J].Renewable Energy, 2016, 94:629-636. [23] JIANG P, WANG Y, WANG J Z.Short-term wind speed forecasting using a hybrid model[J].Energy, 2017, 119:561-577. [24] SHAHID F, ZAMEER A, MUNEEB M.A novel genetic LSTM model for wind power forecast[J].Energy, 2021, 223:1-12. [25] CHEN G C, ZHANG X, GUAN Z W.The wind power forecast model based on improved EMD and SVM[J].Applied Mechanics and Materials, 2014, 694:150-154. [26] ZHU S L, LIAN X Y, WEI L, et al.PM2.5 forecasting using SVR with PSOGSA algorithm based on CEEMD, GRNN and GCA considering meteorological factors[J].Atmospheric Environment, 2018, 183:20-32. [27] BHASKAR K, SINGH S N.AWNN-assisted wind power forecasting using feed-forward neural network[J].IEEE Transactions on Sustainable Energy, 2012, 3(2):306-315. [28] 张雪松, 朱想, 赵波, 等.基于流形算法与RBF网络的超短期风速预测[J].计算机工程, 2017, 43(11):317-321. ZHANG X S, ZHU X, ZHAO B, et al.Ultra-short term wind speed forecast based on manifold algorithm and RBF network[J].Computer Engineering, 2017, 43(11):317-321.(in Chinese) [29] LIU H, MI X W, LI Y F.Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM[J].Energy Conversion and Management, 2018, 159:54-64. [30] HAN L, ZHANG R C, WANG X S, et al.Multi-step wind power forecast based on VMD-LSTM[J].IET Renewable Power Generation, 2019, 13(10):1690-1700. [31] WANG B, WANG J.Energy futures and spots prices forecasting by hybrid SW-GRU with EMD and error evaluation[J].Energy Economics, 2020, 90:104827. [32] CHO K, VAN MERRIENBOER B, GÜLÇEHRE Ç, et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL].[2021-06-10].https://arxiv.org/pdf/1406.1078.pdf. [33] ZHANG Y, LI Y T, ZHANG G Y.Short-term wind power forecasting approach based on Seq2Seq model using NWP data[J].Energy, 2020, 213:1-11. [34] 钱勇生, 邵洁, 季欣欣, 等.基于LSTM-Attention网络的短期风电功率预测[J].电机与控制应用, 2019, 46(9):95-100. QIAN Y S, SHAO J, JI X X, et al.Short-term wind power forecasting based on LSTM-attention network[J].Electric Machines & Control Application, 2019, 46(9):95-100.(in Chinese) [35] LIU H W, SUN J G, LIU L, et al.Feature selection with dynamic mutual information[J].Pattern Recognition, 2009, 42(7):1330-1339. [36] KRASKOV A, STÖGBAUER H, GRASSBERGER P.Estimating mutual information[EB/OL].[2021-06-10].https://arxiv.org/pdf/cond-mat/0305641.pdf. [37] DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J].IEEE Transactions on Signal Processing, 2014, 62(3):531-544. [38] BALDERAS D, PONCE P, MOLINA A.Convolutional long short term memory deep neural networks for image sequence prediction[J].Expert Systems with Applications, 2019, 122:152-162. [39] HOCHREITER S, SCHMIDHUBER J.Long short-term memory[J].Neural Computation, 1997, 9(8):1735-1780. [40] HÜBNER R, STEINHAUSER M, LEHLE C.A dual-stage two-phase model of selective attention[J].Psychological Review, 2010, 117(3):759-784. |