1 |
KIM J H, JANG W D, SIM J Y, et al. Optimized contrast enhancement for real-time image and video dehazing. Journal of Visual Communication and Image Representation, 2013, 24 (3): 410- 425.
doi: 10.1016/j.jvcir.2013.02.004
|
2 |
马文君, 刘金虎, 王小鹏, 等. 结合Lab空间和单尺度Retinex的自适应图像去雾算法. 应用光学, 2020, 41 (1): 100- 106.
URL
|
|
MA W J, LIU J H, WANG X P, et al. Adaptive image defogging algorithm combined with lab space and single-scale Retinex. Journal of Applied Optics, 2020, 41 (1): 100- 106.
URL
|
3 |
LI Z, ZHENG X P, BHANU B, et al. Fast region-adaptive defogging and enhancement for outdoor images containing sky[C]//Proceedings of the 25th International Conference on Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 8267-8274.
|
4 |
YU Z, SUN B Y, LIU D, et al. STRASS dehazing: spatio-temporal Retinex-inspired dehazing by an averaging of stochastic samples. Journal of Renewable Materials, 2022, 10 (5): 1381- 1395.
doi: 10.32604/jrm.2022.018262
|
5 |
ZHANG H, PATEL V M. Densely connected pyramid dehazing network[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 3194-3203.
|
6 |
CHEN D D, HE M M, FAN Q N, et al. Gated context aggregation network for image dehazing and deraining[C]//Proceedings of IEEE Winter Conference on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 2019: 1375-1383.
|
7 |
REN W Q, MA L, ZHANG J W, et al. Gated fusion network for single image dehazing[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 3253-3261.
|
8 |
ZHAO S Y, ZHANG L, SHEN Y, et al. RefineDNet: a weakly supervised refinement framework for single image dehazing. IEEE Transactions on Image Processing, 2021, 30, 3391- 3404.
doi: 10.1109/TIP.2021.3060873
|
9 |
YANG Y, WANG C Y, LIU R S, et al. Self-augmented unpaired image dehazing via density and depth decomposition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 2027-2036.
|
10 |
LI Y F, CHEN X, KONG C H, et al. A deep Hourglass-structured fusion model for efficient single image dehazing. Multimedia Tools and Applications, 2022, 81 (24): 35247- 35260.
doi: 10.1007/s11042-022-12312-5
|
11 |
LIU F, CAO L, SHAO X P, et al. Polarimetric dehazing utilizing spatial frequency segregation of images. Applied Optics, 2015, 54 (27): 8116- 8122.
doi: 10.1364/AO.54.008116
|
12 |
HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2009: 1956-1963.
|
13 |
RAIKWAR S C, TAPASWI S. Lower bound on transmission using non-linear bounding function in single image dehazing. IEEE Transactions on Image Processing, 2020, 29, 4832- 4847.
doi: 10.1109/TIP.2020.2975909
|
14 |
JU M Y, DING C, REN W Q, et al. IDE: image dehazing and exposure using an enhanced atmospheric scattering model. IEEE Transactions on Image Processing, 2021, 30, 2180- 2192.
doi: 10.1109/TIP.2021.3050643
|
15 |
何涛, 赵停, 徐鹤. 基于暗通道先验的单幅图像去雾新算法. 计算机科学, 2021, 48 (7): 219- 224.
URL
|
|
HE T, ZHAO T, XU H. Novel algorithm of single image dehazing based on dark channel prior. Computer Science, 2021, 48 (7): 219- 224.
URL
|
16 |
LI B, WANG S H, ZHENG J, et al. Single image haze removal using content-adaptive dark channel and post enhancement. IET Computer Vision, 2014, 8 (2): 131- 140.
doi: 10.1049/iet-cvi.2013.0011
|
17 |
王硕, 陈金玉. 自适应校正透射率的暗通道先验去雾算法. 计算机工程与应用, 2021, 57 (13): 207- 211.
URL
|
|
WANG S, CHEN J Y. Dark channel prior defogging algorithm for adaptive correction transmittance. Computer Engineering and Applications, 2021, 57 (13): 207- 211.
URL
|
18 |
王国栋, 邵鹏, 王国宇, 等. 基于低秩分解与像素置乱的图像去雾方法. 计算机工程, 2022, 48 (12): 212- 217.
URL
|
|
WANG G D, SHAO P, WANG G Y, et al. Image defogging method based on low rank decomposition and pixel scrambling. Computer Engineering, 2022, 48 (12): 212- 217.
URL
|
19 |
吴向平, 高庆庆, 黄少伟, 等. 基于景深信息的自适应Retinex图像去雾算法. 激光与光电子学进展, 2023, 60 (12): 1210013.
URL
|
|
WU X P, GAO Q Q, HUANG S W, et al. Adaptive Retinex image defogging algorithm based on depth of field information. Laser & Optoelectronics Progress, 2023, 60 (12): 1210013.
URL
|
20 |
TAREL J P, HAUTIÈRE N. Fast visibility restoration from a single color or gray level image[C]//Proceedings of the 12th International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2010: 2201-2208.
|
21 |
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13 (4): 600- 612.
doi: 10.1109/TIP.2003.819861
|
22 |
YAN Y Y, REN W Q, GUO Y F, et al. Image deblurring via extreme channels prior[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 6978-6986.
|
23 |
LI B Y, REN W Q, FU D P, et al. Benchmarking single-image dehazing and beyond. IEEE Transactions on Image Processing, 2019, 28 (1): 492- 505.
|
24 |
HAUTIÈRE N, TAREL J P, AUBERT D, et al. Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Analysis & Stereology, 2011, 27 (2): 87- 95.
|
25 |
彭静, 薛奉金, 苑玉彬. 基于多尺度Retinex和暗通道的自适应图像去雾算法. 激光与光电子学进展, 2021, 58 (4): 0410004.
URL
|
|
PENG J, XUE F J, YUAN Y B. Adaptive image defogging algorithm combining multi-scale Retinex and dark channel. Laser & Optoelectronics Progress, 2021, 58 (4): 0410004.
URL
|