[1] ZOU X H.A survey on application of knowledge graph[J].Journal of Physics:Conference Series,2020,1487(1):012016. [2] 王鑫,傅强,王林,等.知识图谱可视化查询技术综述[J].计算机工程,2020,46(6):1-11. WANG X,FU Q,WANG L,et al.Survey on visualization query technology of knowledge graph[J].Computer Engineering,2020,46(6):1-11.(in Chinese) [3] ZHANG Y Y,DAI H J,KOZAREVA Z,et al.Variational reasoning for question answering with knowledge graph[J].Proceedings of the AAAI Conference on Artificial Intelligence,2018,32(1):6069-6076. [4] ZHOU K,ZHAO W X,BIAN S Q,et al.Improving conversational recommender systems via knowledge graph based semantic fusion[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York,USA:ACM Press,2020:1006-1014. [5] BOUNHAS I,SOUDANI N,SLIMANI Y.Building a morpho-semantic knowledge graph for Arabic information retrieval[J].Information Processing & Management,2020,57(6):102124. [6] PAULHEIM H.Knowledge graph refinement:a survey of approaches and evaluation methods[J].Semantic Web,2016,8(3):489-508. [7] JAYAWARDENE V,SADIQ S,INDULSKA M.An analysis of data quality dimensions[EB/OL].[2022-02-05].https://core.ac.uk/download/pdf/18442961.pdf. [8] WANG X Y,CHEN L Z,BAN T Y,et al.Knowledge graph quality control:a survey[J].Fundamental Research,2021,1(5):607-626. [9] SPERANSKAYA M,SCHMITT M,ROTH B.Ranking vs.classifying:measuring knowledge base completion quality[EB/OL].[2022-02-05].https://arxiv.org/abs/2102.06145. [10] 张晓明,孙维雅,王会勇.基于知识表示学习的知识可信度评估[J].计算机工程,2021,47(7):44-54. ZHANG X M,SUN W Y,WANG H Y.Evaluation of knowledge credibility based on knowledge representation learning[J].Computer Engineering,2021,47(7):44-54.(in Chinese) [11] LI Y F,LI X Y,LEI M J.CTransE:an effective information credibility evaluation method based on classified translating embedding in knowledge graphs[EB/OL].[2022-02-05].https://link.springer.com/chapter/10.1007/978-3-030-59051-2_19. [12] HONG Y,BU C Y,WU X D.High-quality noise detection for knowledge graph embedding with rule-based triple confidence[EB/OL].[2022-02-05].https://link.springer.com/chapter/10.1007/978-3-030-89188-6_43. [13] BOUGIATIOTIS K,FASOULIS R,AISOPOS F,et al.Guiding graph embeddings using path-ranking methods for error detection innoisy knowledge graphs[EB/OL].[2022-02-05].https://arxiv.org/abs/2002.08762. [14] XIE R B,LIU Z Y,LIN F,et al.Does William Shakespeare REALLY write Hamlet? knowledge representation learning with confidence[J].Proceedings of the AAAI Conference on Artificial Intelligence,2018,32(1):1-8. [15] JIA S B,XIANG Y,CHEN X J,et al.Triple trustworthiness measurement for knowledge graph[C]//Proceedings of WWW'19.New York,USA:ACM Press,2019:2865-2871. [16] CUI Y,CHE W,LIU T,et al.Pre-training with whole word masking for Chinese BERT[EB/OL].[2022-02-05].https://arxiv.org/abs/1906.08101. [17] DEVLIN J,CHANG M,LEE K,et al.BERT:pre-training of deep bidirectional transformers for language understanding[EB/OL].[2022-02-05].https://arxiv.org/abs/1810.04805. [18] BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relational data[EB/OL].[2022-02-05].https://papers.nips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf. [19] CHANG D J,CHEN M S,LIU C Z,et al.DiaKG:an annotated diabetes dataset for medical knowledge graph construction[EB/OL].[2022-02-05].https://arxiv.org/pdf/2105.15033.pdf. [20] WU Y T,LIU X,FENG Y S,et al.Relation-aware entity alignment for heterogeneous knowledge graphs[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence.Washington D.C.,USA:IEEE Press,2019:5278-5284. [21] PAL M.Random forest classifier for remote sensing classification[J].International Journal of Remote Sensing,2005,26(1):217-222. [22] LIAO Y H,VEMURI V R.Use of K-Nearest Neighbor classifier for intrusion detection[J].Computers & Security,2002,21(5):439-448. [23] CHEN T,HE T,BENESTY M,et al.xgboost:eXtreme gradient boosting[EB/OL].[2022-02-05].http://ftp.heanet.ie/mirrors/cran.r-project.org/web/packages/xgboost/vignettes/xgboost.pdf. [24] DAVIS J,GOADRICH M.The relationship between Precision-Recall and ROC curves[C]//Proceedings of the 23rd International Conference on Machine Learning.New York,USA:ACM Press,2006:233-240. [25] OZENNE B,SUBTIL F,MAUCORT-BOULCH D.The Precision-Recall curve overcame the optimism of the receiver operating characteristic curve in rare diseases[J].Journal of Clinical Epidemiology,2015,68(8):855-859. |