[1] 贾童瑶, 卓力, 李嘉锋, 等. 基于深度学习的单幅图像去雾研究进展[J]. 电子学报, 2023, 51(1):231-245. JIA T Y, ZHUO L, LI J F, et al. Research advances on deep learning based single image dehazing[J]. Acta Electronica Sinica, 2023, 51(1):231-245.(in Chinese) [2] 魏轶伦, 徐海文. 基于深度学习的图像去雾方法综述研究[J]. 信息技术与信息化, 2023(4):214-216, 220. WEI Y L, XU H W. Overview of image defogging methods based on deep learning[J]. Information Technology and Informatization, 2023(4):214-216, 220.(in Chinese) [3] QIN X, WANG Z L, BAI Y C, et al. FFA-Net:feature fusion attention network for single image dehazing[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7):11908-11915. [4] WANG Q L, WU B G, ZHU P F, et al. ECA-Net:efficient channel attention for deep convolutional neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2020:11534-11542. [5] MCCARTNEYE J. Optics of the atmosphere:scattering by molecules and particles[EB/OL].[2023-09-05].https://ui.adsabs.harvard.edu/abs/1976nyjw.book.....M/abstract. [6] HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12):2341-2353. [7] ZHU Q S, MAI J M, SHAO L. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing, 2015, 24(11):3522-3533. [8] CAI B L, XU X M, JIA K, et al. DehazeNet:an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11):5187-5198. [9] LI Y N, MIAO Q G, OUYANG W L, et al. LAP-Net:level-aware progressive network for image dehazing[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D.C.,USA:IEEE Press,2019:3275-3284. [10] LI B, PENG X, WANG Z, et al. An all-in-one network for dehazing and beyond[EB/OL].[2023-09-05].https://arxiv.org/pdf/1707.06543.pdf. [11] ZHAO S Y, ZHANG L, SHEN Y, et al. RefineDNet:a weakly supervised refinement framework for single image dehazing[J]. IEEE Transactions on Image Processing, 2021, 30:3391-3404. [12] WU R Q, DUAN Z P, GUO C L, et al. RIDCP:revitalizing real image dehazing via high-quality codebook priors[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2023:22282-22291. [13] CHEN D D, HE M M, FAN Q N, et al. Gated context aggregation network for image dehazing and deraining[C]//Proceedings of IEEE Winter Conference on Applications of Computer Vision. Washington D.C.,USA:IEEE Press,2019:1375-1383. [14] 杨振舰, 尚佳美, 张众维, 等. 基于残差注意力机制的图像去雾算法[J]. 西北工业大学学报, 2021, 39(4):901-908. YANG Z J, SHANG J M, ZHANG Z W, et al. A new end-to-end image dehazing algorithm based on residual attention mechanism[J]. Journal of Northwestern Polytechnical University, 2021, 39(4):901-908.(in Chinese) [15] LIU X H, MA Y R, SHI Z H, et al. GridDehazeNet:attention-based multi-scale network for image dehazing[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D.C.,USA:IEEE Press,2019:7313-7322. [16] 肖进胜, 周景龙, 雷俊锋, 等. 面向图像场景转换的改进型生成对抗网络[J]. 软件学报, 2021, 32(9):2755-2768. XIAO J S, ZHOU J L, LEI J F, et al. Improved generative adversarial network for image scene transformation[J]. Journal of Software, 2021, 32(9):2755-2768.(in Chinese) [17] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL].[2023-09-05].https://arxiv.org/abs/1706.03762v4. [18] SONG Y D, HE Z Q, QIAN H, et al. Vision transformers for single image dehazing[J]. IEEE Transactions on Image Processing, 2023, 32:1927-1941. [19] ZHAO H Y, KONG X T, HE J W, et al. Efficient image super-resolution using pixel attention[EB/OL].[2023-09-05].http://link.springer.com/chapter/10.1007/978-3-030-67070-2_3. [20] SONG M, LIM S, KIM W. Monocular depth estimation using Laplacian pyramid-based depth residuals[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(11):4381-4393. [21] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2018:7132-7141. [22] WOO S, PARK J, LEE J Y, et al. CBAM:convolutional block attention module[C]//Proceedings of European Conference on Computer Vision. Berlin,Germany:Springer,2018:3-19. [23] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2021:13713-13722. [24] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2023-09-05].http://arxiv.org/pdf/1409.1556. [25] LI B, REN W, FU D, et al. Benchmarking single-image dehazing and beyond[J]. IEEE Transactions on Image Processing, 2018, 28(1):492-505. |