[1] 刘尚旺, 崔智勇, 李道义.基于Unet网络多任务学习的遥感图像建筑地物语义分割[J].国土资源遥感, 2020, 32(4):74-83. YANG L S W, CUI Z Y, LI D Y.Semantic segmentation of building features in remote sensing images based on unet multi-task learning[J].Remote Sensing for Land and Resources, 2020, 32(4):74-83.(in Chinese) [2] 董鹏曙, 向龙, 谢幼才, 等.基于运动补偿的动目标检测处理方法[J].探测与控制学报, 2020, 42(6):29-34. DONG P S, XIANG L, XIE Y C, et al.MTD process metrology based on motion compensation[J].Journal of Detection and Control, 2020, 42(6):29-34.(in Chinese) [3] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al.Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems.New York, USA:ACM Press, 2014:2672-2680. [4] JU M Y, DING C, ZHANG D Y, et al.Gamma-correction-based visibility restoration for single hazy images[J].IEEE Signal Processing Letters, 2018, 25(7):1084-1088. [5] 董静薇, 赵春丽, 海博.融合同态滤波和小波变换的图像去雾算法研究[J].哈尔滨理工大学学报, 2019, 24(1):66-70. DONG J W, ZHAO C L, HAI B.Research on image De-fog algorithm based on fusion homomorphic filtering and wavelet transform[J].Journal of Harbin University of Science and Technology, 2019, 24(1):66-70.(in Chinese) [6] LI M D, LIU J Y, YANG W H, et al.Structure-revealing low-light image enhancement via robust retinex model[J].IEEE Transactions on Image Processing, 2018, 27(6):2828-2841. [7] WANG W C, YUAN X H, WU X J, et al.Fast image dehazing method based on linear transformation[J].IEEE Transactions on Multimedia, 2017, 19(6):1142-1155. [8] 刘策, 杨燕.基于自适应小波融合的单幅图像去雾算法[J].光电子·激光, 2020, 31(3):318-325. LIU C, YANG Y.Single image dehazing algorithm based on adaptive wavelet fusion[J].Journal of Optoelectronics·Laser, 2020, 31(3):318-325(in Chinese) [9] MCCARTNEY E J.Optics of the atmosphere:scattering by molecules and particles[J].John Wiley and Sons, 1976, 10(2):461-470. [10] HE K M, SUN J, TANG X O, et al.Single image haze removal using dark channel prior[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(12):2341-2353. [11] BERMAN D, TREIBITZ T, AVIDAN S.Non-local image dehazing[C]//Proceedings of IEEE Conference on Computer Vsion and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:1674-1682. [12] 于坤, 焦青亮, 刘子龙, 等.基于中智学的非局部先验图像去雾算法[J].光学技术, 2020, 46(4):476-482. YU K, JIAO Q L, LIU Z L, et al.Non-local prior image dehazing algorithm based on neutrosophy[J].Optical Technique, 2020, 46(4):476-482.(in Chinese) [13] 王殿伟, 闫伟超, 刘颖, 等.基于暗原色先验的快速单幅图像去雾算法[J].计算机应用研究, 2018, 35(12):3836-3840. WANG D W, YAN W C, LIU Y, et al.Fast single image dehazing algorithm based on dark channel prior[J].Application Research of Computers, 2018, 35(12):3836-3840.(in Chinese) [14] CAI B L, XU X M, JIA K, et al.Dehazenet:an end-to-end system for single image haze removal[J].IEEE Transactions on Image Processing, 2016, 25(11):5187-5198. [15] ZHANG H, PATEL V M, et al.Densely connected pyramid dehazing network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:3194-3203. [16] CHEN D D, HE M M, FAN Q N, et al.Gated context aggregation network for image dehazing and deraining[C]//Proceedings of 2019 IEEE Winter Conference on Applications of Computer Vision.Washington D.C., USA:IEEE Press, 2019:1375-1383. [17] LIU X H, MA Y R, SHI Z H, et al.Griddehazenet:attention-based multi-scale network for image dehazing[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:7314-7323. [18] DENG Z J, Z L, HU X W, et al.Deep multi-model fusion for single-image dehazing[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:2453-2462. [19] 任敏敏.图像融合的循环神经网络去雾算法[J].小型微型计算机系统, 2020, 41(7):1513-1518. REN M M.Recurrent network for Image Dehazing based on image fusion scheme[J].Journal of Chinese Mini-Micro Computer Systems, 2020, 41(7):1513-1518.(in Chinese) [20] 刘波宁, 翟东海.基于双鉴别网络的生成对抗网络图像修复方法[J].计算机应用, 2018, 38(12):3557-3562, 3595. LIU B N, ZHAI D H.Image completion method of generative adversarial networks based on two discrimination networks[J].Journal of Computer Applications, 2018, 38(12):3557-3562, 3595.(in Chinese) [21] 斯蒋芸, 谭宁, 张海, 等.基于条件生成对抗网络的咬翼片图像分割[J].计算机工程, 2019, 45(4):223-227. SI J Y, TAN N, ZHANG H, et al.Bitewing radiography image segmentation based on conditio-nal generative adversarial network[J].Computer Engineering, 2019, 45(4):223-227.(in Chinese) [22] ARJOVSKY M, CHINTALA S, BOTTOU L.Wasserstein gan[EB/OL].[2020-10-01] https://arxiv.org/abs/1701.07875v3. [23] LI B Y, REN W Q, FU D P, et al.Benchmarking single-image dehazing and beyond[J].IEEE Transactions on Image Processing, 2018, 28(1):492-505. [24] FATTAL R.Dehazing using color-lines[J].ACM Transactions on Graphics, 2014, 34(1):1-14. [25] SILBERMAN N, HOIEM D, KOHLI P, et al.Indoor segmentation and support inference from RGBD images[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2012:746-760. [26] SCHARSTEIN D, SZELISKI R.High-accuracy stereo depth maps using structured light[C]//Proceedings of 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington D.C., USA:IEEE Press, 2003:11-17. [27] LI B Y, PENG X L, WANG Z Y, et al.Aod-net:all-in-one dehazing network[C]//Proceedings of IEEE International Conference on Computer Vision, Washington D.C., USA:IEEE Press, 2017:4770-4778. [28] REN W Q, MA L, ZHANG J W, et al.Gated fusion network for single image dehazing[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:3253-3261. [29] HE K M, ZHANG X Y, REN S Q, et al.Delving deep into rectifiers:surpassing human-level performance on imagenet classification[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2015:1026-1034. |