[1] 李彦冬.基于卷积神经网络的计算机视觉关键技术研究[D].成都:电子科技大学, 2017. LI Y D.Convolutional neural network based research on image understanding[D].Chengdu:University of Electronic Science and Technology of China, 2017.(in Chinese) [2] 雷飞, 朱林, 王雪丽.改进多尺度Retinex色彩灰度的水下彩色图像研究[J].小型微型计算机系统, 2018, 39(1):185-188. LEI F, ZHU L, WANG X L.Improved multi scale retinex enhancement technology on color underwater image[J].Journal of Chinese Computer Systems, 2018, 39(1):185-188.(in Chinese) [3] KUMAR R, KAUSHIK B K, BALASUBRAMANIAN R.Multispectral transmission map fusion method and architecture for image dehazing[J].IEEE Transactions on Very Large Scale Integration(VLSI) Systems, 2019, 27(11):2693-2697. [4] HE K M, SUN J, TANG X O.Single image haze removal using dark channel prior[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12):2341-2353. [5] ZHU Q S, MAI J M, SHAO L.A fast single image haze removal algorithm using color attenuation prior[J].IEEE Transactions on Image Processing, 2015, 24(11):3522-3533. [6] BERMAN D, TREIBITZ T, AVIDAN S.Non-local image dehazing[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:1674-1682. [7] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al.Generative adversarial networks[J].Communications of the ACM, 2020, 63(11):139-144. [8] CAI B L, XU X M, JIA K, et al.DehazeNet:an end-to-end system for single image haze removal[J].IEEE Transactions on Image Processing, 2016, 25(11):5187-5198. [9] ZHANG H, PATEL V M.Densely connected pyramid dehazing network[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:3194-3203. [10] ZHANG H, SINDAGI V, PATEL V M.Joint transmission map estimation and dehazing using deep networks[J].IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(7):1975-1986. [11] ENGIN D, GENC A, EKENEL H K.Cycle-dehaze:enhanced CycleGAN for single image dehazing[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:938-9388. [12] YANG D, SUN J.Proximal Dehaze-Net:a prior learning-based deep network for single image dehazing[M].Berlin, Germany:Springer, 2018. [13] LI B Y, PENG X L, WANG Z Y, et al.AOD-Net:all-in-one dehazing network[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:4780-4788. [14] ZHANG X Y, DONG H, HU Z, et al.Gated fusion network for degraded image super resolution[J].International Journal of Computer Vision, 2020, 128(6):1699-1721. [15] ZHU J Y, PARK T, ISOLA P, et al.Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of 2017 IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2242-2251. [16] SWAMI K, DAS S K.CANDY:conditional adversarial networks based end-to-end system for single image haze removal[C]//Proceedings of the 24th International Conference on Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:3061-3067. [17] ZHANG H.Learning-based methods for single image restoration and translation[EB/OL].[2021-05-05].https://rucore.libraries.rutgers.edu/rutgers-lib/60116/. [18] WANG R X, ZHANG Q, FU C W, et al.Underexposed photo enhancement using deep illumination estimation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:6842-6850. [19] TAIGMAN Y, POLYAK A, WOLF L.Unsupervised cross-domain image generation[EB/OL].[2021-05-05].https://arxiv.org/pdf/1611.02200.pdf. [20] SILBERMAN N, HOIEM D, KOHLI P, et al.Indoor segmentation and support inference from RGBD images[EB/OL].[2021-05-05].https://cs.nyu.edu/~silberman/papers/indoor_seg_support.pdf. [21] WANG Z, SIMONCELLI E P, BOVIK A C.Multiscale structural similarity for image quality assessment[C]//Proceedings of the 37th Asilomar Conference on Signals, Systems & Computers.Washington D.C., USA:IEEE Press, 2003:1398-1402. [22] WANG Z, BOVIK A C, SHEIKH H R, et al.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing, 2004, 13(4):600-612. [23] 张文博.基于先验知识的图像去雾算法[D].成都:电子科技大学, 2017. ZHANG W B.Image dehazing algorithm based on prior knowledge[D].Chengdu:University of Electronic Science and Technology of China, 2017.(in Chinese) [24] HAN K, WANG Y H, TIAN Q, et al.GhostNet:more features from cheap operations[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:1577-1586. |