1 |
GUEY J C, LIAO P K, CHEN Y S, et al. On 5G radio access architecture and technology. IEEE Wireless Communications, 2015, 22 (5): 2- 5.
doi: 10.1109/MWC.2015.7306369
|
2 |
高辉, 田野. 5G传送网方案和关键技术研究. 电子世界, 2021, (21): 61- 62.
doi: 10.12043/j.issn.1003-0522.2021.21.dzsj202121031
|
|
GAO H, TIAN Y. Research on scheme and key technologies of 5G transport network. Electronics World, 2021, (21): 61- 62.
doi: 10.12043/j.issn.1003-0522.2021.21.dzsj202121031
|
3 |
黄诚. 5G承载网关键技术和组网方案探讨. 邮电设计技术, 2021, (4): 15- 18.
URL
|
|
HUANG C. Discussion on key technologies and networking scheme of 5G bearer network. Designing Techniques of Posts and Telecommunications, 2021, (4): 15- 18.
URL
|
4 |
WANG P, XIAO J, PING L. Comparison of orthogonal and non-orthogonal approaches to future wireless cellular systems. IEEE Vehicular Technology Magazine, 2006, 1 (3): 4- 11.
doi: 10.1109/MVT.2006.307294
|
5 |
TULLBERG H, POPOVSKI P, LI Z X, et al. The METIS 5G system concept: meeting the 5G requirements. IEEE Communications Magazine, 2016, 54 (12): 132- 139.
doi: 10.1109/MCOM.2016.1500799CM
|
6 |
FU Y R, SHUM K W, SUNG C W, et al. Optimal user pairing in cache-based NOMA systems with index coding[C]//Proceedings of IEEE International Conference on Communications. Washington D. C., USA: IEEE Press, 2019: 1-6.
|
7 |
廖晗, 马东亚, 尹礼欣. 基于非正交多址的认知MIMO网络次用户系统容量优化. 计算机应用, 2017, 37 (12): 3361- 3367.
doi: 10.11772/j.issn.1001-9081.2017.12.3361
|
|
LIAO H, MA D Y, YIN L X. Capacity optimization of secondary user system in MIMO cognitive networks based on non-orthogonal multiple access. Journal of Computer Applications, 2017, 37 (12): 3361- 3367.
doi: 10.11772/j.issn.1001-9081.2017.12.3361
|
8 |
DING Z G, YANG Z, FAN P Z, et al. On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Processing Letters, 2014, 21 (12): 1501- 1505.
doi: 10.1109/LSP.2014.2343971
|
9 |
XU P, YUAN Y, DING Z G, et al. On the outage performance of non-orthogonal multiple access with 1-bit feedback. IEEE Transactions on Wireless Communications, 2016, 15 (10): 6716- 6730.
doi: 10.1109/TWC.2016.2587880
|
10 |
VAEZI M, SCHOBER R, DING Z G, et al. Non-orthogonal multiple access: common myths and critical questions. IEEE Wireless Communications, 2019, 26 (5): 174- 180.
doi: 10.1109/MWC.2019.1800598
|
11 |
肖可鑫. 非正交多址接入系统中的编码调制技术研究[D]. 上海: 上海交通大学, 2019.
|
|
XIAO K X. Research on coded modulation technology for non-orthogonal multiple access systems[D]. Shanghai: Shanghai Jiao Tong University, 2019. (in Chinese)
|
12 |
DAI L L, WANG B C, DING Z G, et al. A survey of non-orthogonal multiple access for 5G. IEEE Communications Surveys & Tutorials, 2018, 20 (3): 2294- 2323.
|
13 |
ISLAM S M R, AVAZOV N, DOBRE O A, et al. Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges. IEEE Communications Surveys & Tutorials, 2017, 19 (2): 721- 742.
|
14 |
BENJEBBOUR A, SAITO Y, KISHIYAMA Y, et al. Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access[C]//Proceedings of International Symposium on Intelligent Signal Processing and Communication Systems. Washington D. C., USA: IEEE Press, 2014: 770-774.
|
15 |
TSE D, VISWANATH P. Fundamentals of wireless communication. Cambridge, UK: Cambridge University Press, 2005.
|
16 |
赵蕊. 非正交多址技术中功分多址的研究[D]. 北京: 北京邮电大学, 2015.
|
|
ZHAO R. Research on power allocation in non-orthogonal multiple access[D]. Beijing: Beijing University of Posts and Telecommunications, 2015. (in Chinese)
|
17 |
GOLDSMITH A. Wireless communications. New York, USA: Cambridge University Press, 2005.
|
18 |
徐兰菊. 球填装和球面上填装问题的研究[D]. 北京: 清华大学, 2006.
|
|
XU L J. Research on the problem of sphere packings and the packing on the surface of a sphere[D]. Beijing: Tsinghua University, 2006. (in Chinese)
|
19 |
QIU M, HUANG Y C, YUAN J H, et al. Lattice-partition-based downlink non-orthogonal multiple access without SIC for slow fading channels. IEEE Transactions on Communications, 2019, 67 (2): 1166- 1181.
doi: 10.1109/TCOMM.2018.2878847
|
20 |
QIU M, HUANG Y C, SHIEH S L, et al. A lattice-partition framework of downlink non-orthogonal multiple access without SIC[C]//Proceedings of IEEE Global Communications Conference. Washington D. C., IEEE Press, 2018: 1-6.
|
21 |
VAMEGHESTAHBANATI M, MARSLAND I D, GOHARY R H, et al. Multidimensional constellations for uplink SCMA systems—a comparative study. IEEE Communications Surveys & Tutorials, 2019, 21 (3): 2169- 2194.
|
22 |
SUNG C W, SHUM K W. Lattice-superposition NOMA for near-far users[C]//Proceedings of International Symposium on Intelligent Signal Processing and Communication Systems. Washington D. C., USA: IEEE Press, 2020: 1-12.
|
23 |
ZOU J, SUNG C W, SHUM K W. High-dimensional superposition NOMA and its user pairing strategy. IEEE Transactions on Wireless Communications, 2021, 20 (6): 3800- 3814.
doi: 10.1109/TWC.2021.3053622
|
24 |
陈发堂, 贾东升, 耿明月. 一种低复杂度的SCMA系统多用户检测算法. 计算机工程, 2018, 44 (6): 40- 44.
URL
|
|
CHEN F T, JIA D S, GENG M Y. A multi-user detection algorithm for SCMA system with low complexity. Computer Engineering, 2018, 44 (6): 40- 44.
URL
|
25 |
SUN J Y, ZOU J, QU J, et al. Four-dimensional modulation superposition NOMA scheme with non-ideal channel estimation[C]//Proceedings of IEEE/CIC International Conference on Communications in China. Washington D. C., USA: IEEE Press, 2020: 172-177.
|
26 |
CHERNOFF H. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. The Annals of Mathematical Statistics, 1952, 23 (4): 493- 507.
doi: 10.1214/aoms/1177729330
|