1 |
ZENG D, LIU K, LAI S, et al. Relation classification via convolutional deep neural network[C]//Proceedings of the 25th International Conference on Computational Linguistics. Dublin, Republic of Ireland: [s. n.], 2014: 2335-2344.
|
2 |
ZHANG S, ZHENG D, HU X, et al. Bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 29th Pacific Asia Conference on Language. New York, USA: ACM Press, 2015: 73-78.
|
3 |
ZHANG Y H, QI P, MANNING C D. Graph convolution over pruned dependency trees improves relation extraction[C]//Proceedings of 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2018: 2205-2215.
|
4 |
李明耀, 杨静. 基于依存分析的开放式中文实体关系抽取方法. 计算机工程, 2016, 42 (6): 201- 207.
URL
|
|
LI M Y, YANG J. Open Chinese entity relation extraction method based on dependency parsing. Computer Engineering, 2016, 42 (6): 201- 207.
URL
|
5 |
YAO Y A, YE D M, LI P, et al. DocRED: a large-scale document-level relation extraction dataset[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2019: 764-777.
|
6 |
VERGA P, STRUBELL E, MCCALLUM A. Simultaneously self-attending to all mentions for full-abstract biological relation extraction[C]//Proceedings of 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: Association for Computational Linguistics, 2018: 872-884.
|
7 |
CHRISTOPOULOU F, MIWA M, ANANIADOU S. Connecting the dots: document-level neural relation extraction with edge-oriented graphs[C]//Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2019: 4925-4936.
|
8 |
SAHU S K, CHRISTOPOULOU F, MIWA M, et al. Inter-sentence relation extraction with document-level graph convolutional neural network[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2019: 4309-4316.
|
9 |
NAN G S, GUO Z J, SEKULIC I, et al. Reasoning with latent structure refinement for document-level relation extraction[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2020: 1546-1557.
|
10 |
ZENG S A, XU R X, CHANG B B, et al. Double graph based reasoning for document-level relation extraction[C]//Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2020: 1630-1640.
|
11 |
PENNINGTON J, SOCHER R, MANNING C. Glove: global vectors for word representation[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2014: 1532-1543.
|
12 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2022-07-14]. https://arxiv.org/abs/1810.04805.
|
13 |
FU S C, LIU W F, ZHANG K, et al. Semi-supervised classification by graph p-Laplacian convolutional networks. Information Sciences, 2021, 560, 92- 106.
doi: 10.1016/j.ins.2021.01.075
|
14 |
QUIRK C, POON H. Distant supervision for relation extraction beyond the sentence boundary[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2017: 1171-1182.
|
15 |
XU W, CHEN K H, ZHAO T J. Document-level relation extraction with reconstruction[C]//Proceedings of AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2021: 14167-14175.
|
16 |
|
17 |
GUO Z J, ZHANG Y, LU W. Attention guided graph convolutional networks for relation extraction[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2019: 241-251.
|
18 |
吴婷, 孔芳. 基于图注意力卷积神经网络的文档级关系抽取. 中文信息学报, 2021, 35 (10): 73- 80.
URL
|
|
WU T, KONG F. Document-level relation extraction based on graph attention convolutional neural network. Journal of Chinese Information Processing, 2021, 35 (10): 73- 80.
URL
|
19 |
ZHANG Z Y, YU B W, SHU X B, et al. Document-level relation extraction with dual-tier heterogeneous graph[C]//Proceedings of the 28th International Conference on Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2020: 1630-1641.
|
20 |
ZHOU W X, HUANG K, MA T Y, et al. Document-level relation extraction with adaptive thresholding and localized context pooling[C]//Proceedings of AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2021: 14612-14620.
|
21 |
HUANG Q Z, ZHU S Q, FENG Y S, et al. Three sentences are all you need: local path enhanced document relation extraction[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2021: 998-1004.
|
22 |
WU Y, LUO R B, LEUNG H C M, et al. RENET: a deep learning approach for extracting gene-disease associations from literature[C]//Proceedings of International Conference on Research in Computational Molecular Biology. Berlin, Germany: Springer, 2019: 272-284.
|
23 |
|
24 |
TANG H Z, CAO Y N, ZHANG Z Y, et al. Hin: hierarchical inference network for document-level relation extraction[C]//Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin, Germany: Springer, 2020: 197-209.
|
25 |
SOROKIN D, GUREVYCH I. Context-aware representations for knowledge base relation extraction[C]//Proceedings of 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2017: 1784-1789.
|