1 |
陈燕方, 李志宇, 梁循, 等. 在线社会网络谣言检测综述. 计算机学报, 2018, 41 (7): 1648- 1677.
URL
|
|
CHEN Y F, LI Z Y, LIANG X, et al. Review on rumor detection of online social networks. Chinese Journal of Computers, 2018, 41 (7): 1648- 1677.
URL
|
2 |
张仰森, 彭媛媛, 段宇翔, 等. 基于评论异常度的新浪微博谣言识别方法. 自动化学报, 2020, 46 (8): 1689- 1702.
URL
|
|
ZHANG Y S, PENG Y Y, DUAN Y X, et al. The method of Sina Weibo rumor detecting based on comment abnormality. Acta Automatica Sinica, 2020, 46 (8): 1689- 1702.
URL
|
3 |
XIAO L, ZHANG X L, JING L P, et al. Does head label help for long-tailed multi-label text classification. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (16): 14103- 14111.
doi: 10.1609/aaai.v35i16.17660
|
4 |
DEVLIN J, CHANG M, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[EB/OL]. [2023-01-05]. https://arxiv.org/abs/1810.04805.
|
5 |
SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 4080-4090.
|
6 |
POUYANFAR S, TAO Y D, MOHAN A, et al. Dynamic sampling in convolutional neural networks for imbalanced data classification[C]//Proceedings of IEEE Conference on Multimedia Information Processing and Retrieval. Washington D. C., USA: IEEE Press, 2018: 112-117.
|
7 |
HE H B, GARCIA E A. Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 2009, 21 (9): 1263- 1284.
doi: 10.1109/TKDE.2008.239
|
8 |
HUANG C, LI Y N, LOY C C, et al. Deep imbalanced learning for face recognition and attribute prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (11): 2781- 2794.
doi: 10.1109/TPAMI.2019.2914680
|
9 |
BRANCO P, TORGO L, RIBEIRO R P. A survey of predictive modeling on imbalanced domains. ACM Computing Surveys, 2017, 49 (2): 1- 50.
|
10 |
ZHOU B Y, CUI Q, WEI X S, et al. BBN: bilateral-branch network with cumulative learning for long-tailed visual recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 9716-9725.
|
11 |
QI H, BROWN M, LOWE D G. Low-shot learning with imprinted weights[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 5822-5830.
|
12 |
YUAN M Q, XU J K, LI Z N. Long tail multi-label learning[C]//Proceedings of IEEE International Conference on Artificial Intelligence and Knowledge Engineering. Washington D. C., USA: IEEE Press, 2019: 28-31.
|
13 |
HARIHARAN B, GIRSHICK R. Low-shot visual recognition by shrinking and hallucinating features[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 3037-3046.
|
14 |
GIDARIS S, KOMODAKIS N. Dynamic few-shot visual learning without forgetting[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 4367-4375.
|
15 |
YIN X, YU X, SOHN K, et al. Feature transfer learning for face recognition with under-represented data[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 5697-5706.
|
16 |
WANG Y X, RAMANAN D, HEBERT M H. Learning to model the tail [C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 7029-7039.
|
17 |
LIU Z W, MIAO Z Q, ZHAN X H, et al. Large-scale long-tailed recognition in an open world[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 2532-2541.
|
18 |
ARORA U, PAKA W S, CHAKRABORTY T. Multitask learning for blackmarket tweet detection[C]//Proceedings of 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. Washington D. C., USA: IEEE Press, 2019: 127-130.
|
19 |
CHIRIL P, MORICEAU V, BENAMARA F, et al. An annotated corpus for sexism detection in French tweets[C]//Proceedings of the 12th Language Resources and Evaluation Conference. Washington D. C., USA: IEEE Press, 2020: 1397-1403.
|
20 |
|
21 |
JAIN A, KASBE A. Fake news detection[C]//Proceedings of IEEE International Students' Conference on Electrical, Electronics and Computer Science. Washington D. C., USA: IEEE Press, 2018: 1-5.
|
22 |
|
23 |
|
24 |
LI J Y, SUN M S. Scalable term selection for text categorization[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. [S. l. ]: ACL Press, 2007: 774-782.
|
25 |
SHU J, XIE Q, YI L X, et al. Meta-Weight-Net: learning an explicit mapping for sample weighting [C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2019: 1919-1930.
|
26 |
WANG P, HAN K, WEI X S, et al. Contrastive learning based hybrid networks for long-tailed image classification[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 943-952.
|
27 |
LI S, GONG K X, LIU C H, et al. MetaSAug: meta semantic augmentation for long-tailed visual recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 5208-5217.
|
28 |
|