[1] JAGTAP S S,SHANKAR SRIRAM V S,KOTECHA K,et al.Securing industrial control systems from cyber-attacks:a stacked neural-network based approach[EB/OL].[2022-07-26].https://ieeexplore.ieee.org/document/9762042. [2] CHEN J M,GAO X S,DENG R L,et al.Generating adversarial examples against machine learning-based intrusion detector in industrial control systems[J].IEEE Transactions on Dependable and Secure Computing,2022,19(3):1810-1825. [3] 国家互联网应急中心.2020年我国互联网网络安全态势综述[EB/OL].[2022-07-26].https://www.cert.org.cn/publish/main/46/2021/20210526121148344277777/20210526121148344277777_.html. National Internet Emergency Center.Overview of China's Internet network security situation in 2020[EB/OL].[2022-07-26].https://www.cert.org.cn/publish/main/46/2021/20210526121148344277777/20210526121148344277777_.html.(in Chinese) [4] CHEN Y P,YUAN F S.Multi-scale network traffic anomaly detection based on improved genetic algorithm[C]//Proceedings of IEEE International Conference on Electrical Engineering,Big Data and Algorithms.Washington D.C.,USA:IEEE Press,2022:1362-1367. [5] WANG Z D,ZENG Y,LIU Y D,et al.Deep belief network integrating improved kernel-based extreme learning machine for network intrusion detection[J].IEEE Access,2021,9:16062-16091. [6] ZHOU X K,LIANG W,SHIMIZU S,et al.Siamese neural network based few-shot learning for anomaly detection in industrial cyber-physical systems[J].IEEE Transactions on Industrial Informatics,2020,17(8):5790-5798. [7] MASSAOUDI M,REFAAT S S,ABU-RUB H.Intrusion detection method based on SMOTE transformation for smart grid cybersecurity[C]//Proceedings of the 3rd International Conference on Smart Grid and Renewable Energy.Washington D.C.,USA:IEEE Press,2022:1-6. [8] FU W,QIAN L P,ZHU X H.GAN-based intrusion detection data enhancement[C]//Proceedings of the 33rd Chinese Control and Decision Conference.Washington D.C.,USA:IEEE Press,2021:2739-2744. [9] DENG R W,YUAN J,LI X Y,et al.DACNN:deep autoencoding convolutional neural network in network intrusion detection[C]//Proceedings of the 7th International Conference on Big Data Analytics.Washington D.C.,USA:IEEE Press,2022:224-230. [10] 周杰英,贺鹏飞,邱荣发,等.融合随机森林和梯度提升树的入侵检测研究[J].软件学报,2021,32(10):3254-3265. ZHOU J Y,HE P F,QIU R F,et al.Research on intrusion detection based on random forest and gradient boosting tree[J].Journal of Software,2021,32(10):3254-3265.(in Chinese) [11] HUSSAIN F,HUSSAIN R,ALI HASSAN S,et al.Machine learning in IoT security:current solutions and future challenges[J].IEEE Communications Surveys & Tutorials,2020,22(3):1686-1721. [12] HAMOUDA D,FERRAG M A,BENHAMIDA N,et al.Intrusion detection systems for industrial Internet of Things:a survey[C]//Proceedings of International Conference on Theoretical and Applicative Aspects of Computer Science.Washington D.C.,USA:IEEE Press,2022:1-8. [13] HNAMTE V,HUSSAIN J.An extensive survey on intrusion detection systems:datasets and challenges for modern scenario[C]//Proceedings of the 3rd International Conference on Electrical,Control and Instrumentation Engineering.Washington D.C.,USA:IEEE Press,2022:1-10. [14] SOHN K,YAN X C,LEE H.Learning structured output representation using deep conditional generative models[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems.Cambridge,USA:MIT Press,2015:3483-3491. [15] KINGMA D P,WELLING M.Auto-encoding variational Bayes[C]//Proceedings of the 2nd International Conference on Learning Representations.New York,USA:ACM Press,2014:112-134. [16] GOODFELLOW I J,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems.Cambridge,USA:MIT Press,2014:2672-2680. [17] SHETTAR P,KACHAVIMATH A V,MULLA M M,et al.Intrusion detection system using MLP and chaotic neural networks[C]//Proceedings of International Conference on Computer Communication and Informatics.Washington D.C.,USA:IEEE Press,2021:1-4. [18] PROKHORENKOVA L,GUSEV G,VOROBEV A,et al.CatBoost:unbiased boosting with categorical features[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems.Cambridge,USA:MIT Press,2018:6639-6649. [19] MOUSTAFA N,SLAY J.UNSW-NB15:a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set)[C]//Proceedings of Military Communications and Information Systems Conference.Washington D.C.,USA:IEEE Press,2015:1-6. [20] CHEN L,WENG S E,PENG C J,et al.ZYELL_NCTU NetTraffic_1.0:a large-scale dataset for real-world network anomaly detection[C]//Proceedings of IEEE International Conference on Consumer Electronics.Washington D.C.,USA:IEEE Press,2021:1-2. [21] LATIF S,IDREES Z,ZOU Z,et al.DRaNN:a deep random neural network model for intrusion detection in industrial IoT[C]//Proceedings of International Conference on UK-China Emerging Technologies.Washington D.C.,USA:IEEE Press,2020:1-4. [22] YANG K X,SHI Y F,YU Z W,et al.Stacked one-class broad learning system for intrusion detection in industry 4.0[EB/OL].[2022-07-26].https://ieeexplore.ieee.org/document/9730077. [23] 任家东,张亚飞,张炳,等.基于特征选择的工业互联网入侵检测分类方法[J].计算机研究与发展,2022,59(5):1148-1159. REN J D,ZHANG Y F,ZHANG B,et al.Classification method of industrial Internet intrusion detection based on feature selection[J].Journal of Computer Research and Development,2022,59(5):1148-1159.(in Chinese) [24] 梁杰,陈嘉豪,张雪芹,等.基于独热编码和卷积神经网络的异常检测[J].清华大学学报(自然科学版),2019,59(7):523-529. LIANG J,CHEN J H,ZHANG X Q,et al.One-hot encoding and convolutional neural network based anomaly detection[J].Journal of Tsinghua University (Science and Technology),2019,59(7):523-529.(in Chinese) [25] 崔景洋,陈振国,田立勤,等.基于机器学习的用户与实体行为分析技术综述[J].计算机工程,2022,48(2):10-24. CUI J Y,CHEN Z G,TIAN L Q,et al.Overview of user and entity behavior analytics technology based on machine learning[J].Computer Engineering,2022,48(2):10-24.(in Chinese) [26] 李贝贝,彭力,戴菲菲.结合马氏距离与自编码器的网络流量异常检测方法[J].计算机工程,2022,48(4):133-142. LI B B,PENG L,DAI F F.Abnormal network traffic detection method combining Mahalanobis distance and autoencoder[J].Computer Engineering,2022,48(4):133-142.(in Chinese) [27] 陈铁明,董航.使用蚁群算法和深度强化学习的工业异常入侵检测[J].小型微型计算机系统,2022,43(4):779-784. CHEN T M,DONG H.Industrial anomaly intrusion detection using ant colony algorithm and deep reinforcement learning[J].Journal of Chinese Computer Systems,2022,43(4):779-784.(in Chinese) [28] 何戡,曲超,宗学军,等.机器学习在工业网络入侵检测中的研究应用[J].小型微型计算机系统,2021,42(2):437-442. HE K,QU C,ZONG X J,et al.Research and application of machine learning in industrial network intrusion detection[J].Journal of Chinese Computer Systems,2021,42(2):437-442.(in Chinese) |