| 1 | 马晓飞, 张尔赫.  "数字中国"建设背景下高校学生计算思维培养研究: 热点、趋势与建议. 图书情报工作, 2023, 67 (13): 142- 151. | 
																													
																						|  |  MA X F ,  ZHANG E H .  Research on the cultivation of computational thinking of university students in the context of "digital China" construction: hot spots, trends and suggestions. Library and Intelligence Work, 2023, 67 (13): 142- 151. | 
																													
																						| 2 | 詹泽慧, 钟煊妍, 邹萱萱, 等.  以评促教: 基于事理图谱的计算思维水平评价方法. 现代远距离教育, 2024, (1): 45- 57. | 
																													
																						|  |  ZHAN Z H ,  ZHONG X Y ,  ZOU X X , et al.  Assessing for teaching: a matter-of-fact mapping-based approach to evaluating computational thinking levels. Modern Distance Education, 2024, (1): 45- 57. | 
																													
																						| 3 | 何文涛, 张梦丽, 逯行, 等.  人工智能视域下人机协同教学模式构建. 现代远距离教育, 2023, (2): 78- 87. | 
																													
																						|  |  HE W T ,  ZHANG M L ,  LU X , et al.  The construction of human-machine collaborative teaching mode from the perspective of artificial intelligence. Modern Distance Education, 2023, (2): 78- 87. | 
																													
																						| 4 | DATWANI K, OGAWA M B C, CROSBY M E. Understanding humans' cognitive processes during computational thinking through cognitive science[C]//Proceedings of International Conference on Human-Computer Interaction. Berlin, Germany: Springer, 2022: 242-260. | 
																													
																						| 5 | 詹泽慧, 季瑜, 牛世婧, 等.  ChatGPT嵌入教育生态的内在机理、表征形态及风险化解. 现代远距离教育, 2023, (4): 3- 13. | 
																													
																						|  |  ZHAN Z H ,  JI Y ,  NIU S J , et al.  The intrinsic mechanism, representational form, and risk mitigation of embedding ChatGPT into the education ecosystem. Modern Distance Education, 2023, (4): 3- 13. | 
																													
																						| 6 |  RAMAZAN Y ,  GIZEM K Y F .  The effect of generative Artificial Intelligence (AI)-based tool use on students' computational thinking skills, programming self-efficacy and motivation. Computers and Education: Artificial Intelligence, 2023, 4, 100147.  doi: 10.1016/j.caeai.2023.100147
 | 
																													
																						| 7 | 龚芙蓉.  ChatGPT类生成式AI对高校图书馆数字素养教育的影响探析. 图书情报知识, 2023, 40 (5): 97-106, 156. | 
																													
																						|  |  GONG F R .  The impact of generative AI like ChatGPT on digital literacy education in university libraries. Documentation, Information & Knowledge, 2023, 40 (5): 97-106, 156. | 
																													
																						| 8 |  WING J M .  Computational thinking. Communications of the ACM, 2006, 49 (3): 33- 35.  doi: 10.1145/1118178.1118215
 | 
																													
																						| 9 |  WING J M .  Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2008, 366 (1881): 3717- 3725.  doi: 10.1098/rsta.2008.0118
 | 
																													
																						| 10 | BRENNAN K, RESNICK M. New frameworks for studying and assessing the development of computational thinking[C]//Proceedings of the 2012 Annual Meeting of the American Educational Research Association. Vancouver, Canada: [s. n], 2012: 25. | 
																													
																						| 11 | CYNTHIA S, JOHN W. Computational thinking: the developing definition[C]//Proceedings of the 18th Annual Conference on Innovation and Technology in Computer Science Education. New York, USA: ACM Press, 2013: 1-23. | 
																													
																						| 12 |  LIU C C ,  CHENG Y B ,  HUANG C W .  The effect of simulation games on the learning of computational problem solving. Computers & Education, 2011, 57 (3): 1907- 1918. | 
																													
																						| 13 | 何旭, 罗凌, 彭小云, 等.  基于CiteSpace的协作学习研究热点及趋势分析. 教育信息技术, 2022, (10): 35- 38. | 
																													
																						|  |  HE X ,  LUO L ,  PENG X Y , et al.  Research hotspots and trend analysis of collaborative learning based on CiteSpace. Educational Information Technology, 2022, (10): 35- 38. | 
																													
																						| 14 |  AJJAWI R ,  BOUD D .  Researching feedback dialogue: an interactional analysis approach. Assessment & Evaluation in Higher Education, 2017, 42 (2): 252- 265. | 
																													
																						| 15 | 首新, 田伟, 李健, 等.  基于过程数据的人机"虚拟代理"协作问题解决测评研究——以PISA中国四地区为例. 现代教育技术, 2023, 33 (10): 86- 97. | 
																													
																						|  |  SHOU X ,  TIAN W ,  LI J , et al.  Research of on the man-machine "virtual agents" of collaborative problem solving assessment based on process data——a case study of PISA test in four regions of China. Modern Educational Technology, 2023, 33 (10): 86- 97. | 
																													
																						| 16 |  LICHTENTHALER U .  Substitute or synthesis: the interplay between human and artificial intelligence. Research-Technology Management, 2018, 61 (5): 12- 14.  doi: 10.1080/08956308.2018.1495962
 | 
																													
																						| 17 | 梁云真, 刘瑞星, 任丽玲.  面向计算思维培养的人机协同精准教学模式研究——以小学六年级信息技术课"丝绸之路大闯关" 为例. 现代教育技术, 2022, 32 (3): 51- 60. | 
																													
																						|  |  LIANG Y Z ,  LIU R X ,  REN L L .  Research on precision teaching model of human-computer collaboration for the cultivation of computational thinking——taking the sixth grade information technology class "silk road breakthrough" as an example. Modern Educational Technology, 2022, 32 (3): 51- 60. | 
																													
																						| 18 | 陈赞安, 李宁宇, 尹以晴, 等.  从算法到参与构建计算模型: 人机协同视域下计算思维的内涵演进与能力结构. 远程教育杂志, 2021, 39 (4): 34- 41. | 
																													
																						|  |  CHEN Z A ,  LI N Y ,  YIN Y Q , et al.  From algorithm to participation in building computational models: concept evolution and capability structure of computational thinking in the perspective of human-machine coordinated. Journal of Distance Education, 2021, 39 (4): 34- 41. | 
																													
																						| 19 | 陈健鹏, 马建辉, 王怡君.  基于多轮交互的人机对话系统综述. 南京信息工程大学学报(自然科学版), 2019, 11 (3): 256- 268. | 
																													
																						|  |  CHEN J P ,  MA J H ,  WANG Y J .  A survey of human-computer dialogue system based on multiple-round interaction. Journal of Nanjing University of Information Engineering (Natural Science Edition), 2019, 11 (3): 256- 268. | 
																													
																						| 20 | 詹泽慧.  基于智能Agent的远程学习者情感与认知识别模型——眼动追踪与表情识别技术支持下的耦合. 现代远程教育研究, 2013, (5): 100- 105. | 
																													
																						|  |  ZHAN Z H .  An emotional and cognitive recognition model for distance learners based on intelligent Agent—the coupling of eye tracking and expression recognition techniques. Modern Distance Education Research, 2013, (5): 100- 105. | 
																													
																						| 21 | 方海光.  教育大数据: 迈向未来学校的智慧教育. 北京: 电子工业出版社, 2019. | 
																													
																						|  |  FANG H G .  Education big data: smart education for future schools. Beijing: Publishing House of Electronics Industry, 2019. | 
																													
																						| 22 | 刘三女牙, 杨宗凯.  量化学习——数据驱动下的学习行为分析. 北京: 科学出版社, 2016. | 
																													
																						|  |  LIU S N Y ,  YANG Z K .  Learning behavior analysis driven by quantitative learning data. Beijing: Science Press, 2016. | 
																													
																						| 23 | PANG B, LEE L, VAITHYANATHAN S. Thumbs up? : sentiment classification using machine learning techniques[C]//Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing. Morristown, USA: Association for Computational Linguistics, 2002: 79-86. | 
																													
																						| 24 | 邹晓辉.  朴素贝叶斯算法在文本分类中的应用. 数字技术与应用, 2017, (12): 132- 133. | 
																													
																						|  |  ZOU X H .  Application of Naive Bayesian algorithm in text classification. Digital Technology & Application, 2017, (12): 132- 133. | 
																													
																						| 25 | 韩坤, 潘宏鹏, 刘忠轶.  融合BERT多层次特征的短视频网络舆情情感分析研究. 计算机科学与探索, 2024, 18 (4): 1010- 1020. | 
																													
																						|  |  HAN K ,  PAN H P ,  LIU Z T .  Research on sentiment analysis of short video network public opinion by intergrating BERT multi-level features. Journal of Frontiers of Computer Science and Technology, 2024, 18 (4): 1010- 1020. | 
																													
																						| 26 |  | 
																													
																						| 27 |  ZHANG Y Z ,  TIWARI P ,  SONG D W , et al.  Learning interaction dynamics with an interactive LSTM for conversational sentiment analysis. Neural Networks, 2021, 133, 40- 56. | 
																													
																						| 28 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2024-01-15]. https://arxiv.org/pdf/1810.04805 . | 
																													
																						| 29 | 徐绪堪, 印家伟, 王晓娇.  基于BERT模型的"互联网+政务" 群众留言文本热点追踪研究. 情报杂志, 2022, 41 (9): 136-142, 78. | 
																													
																						|  |  XU X K ,  YIN J W ,  WANG X J .  Research on hotspot tracking of "Internet + government affairs" mass message text based on BERT model. Journal of Intelligence, 2022, 41 (9): 136-142, 78. | 
																													
																						| 30 | UTO M, XIE Y K, UENO M. Neural automated essay scoring incorporating handcrafted features[C]//Proceedings of the 28th International Conference on Computational Linguistics. Stroudsburg, USA: International Committee on Computational Linguistics, 2020: 6077-6088. | 
																													
																						| 31 |  WU Z Y ,  LIANG Q Y ,  ZHAN Z H .  Course recommendation based on enhancement of meta-path embedding in heterogeneous graph. Applied Sciences, 2023, 13 (4): 2404. | 
																													
																						| 32 | 孙悦, 赵宇红, 薛婷.  基于异质图注意力网络的重叠社区发现方法. 计算机工程与设计, 2023, 44 (12): 3649- 3655. | 
																													
																						|  |  SUN Y ,  ZHAO Y H ,  XUE T .  Overlapping community discovery method based on heterogeneous graph attention network. Computer Engineering and Design, 2023, 44 (12): 3649- 3655. | 
																													
																						| 33 |  CHANG Y M ,  CHEN C ,  HU W B , et al.  Megnn: meta-path extracted graph neural network for heterogeneous graph representation learning. Knowledge-Based Systems, 2022, 235, 107611. | 
																													
																						| 34 | 周京艳, 刘如, 李佳娱, 等.  情报事理图谱的概念界定与价值分析. 情报杂志, 2018, 37 (5): 31-36, 42. | 
																													
																						|  |  ZHOU J Y ,  LIU R ,  LI J Y , et al.  Study on the concept and value of intelligence event evolutionary graph. Journal of Intelligence, 2018, 37 (5): 31-36, 42. | 
																													
																						| 35 | 魏建香, 梁帅, 朱云霞, 等.  事理图谱研究进展. 情报资料工作, 2023, 44 (6): 35- 43. | 
																													
																						|  |  WEI J X ,  LIANG S ,  ZHU Y X , et al.  Progress in the study of event evolution graph. Information and Documentation Services, 2023, 44 (6): 35- 43. | 
																													
																						| 36 |  | 
																													
																						| 37 | 陈海涵, 吴国栋, 李景霞, 等.  基于注意力机制的深度学习推荐研究进展. 计算机工程与科学, 2021, 43 (2): 370- 380. | 
																													
																						|  |  CHEN H H ,  WU G D ,  LI J X , et al.  Research advances on deep learning recommendation based on attention mechanism. Computer Engineering & Science, 2021, 43 (2): 370- 380. | 
																													
																						| 38 | WANG X, JI H Y, SHI C, et al. Heterogeneous graph attention network[C]//Proceedings of the World Wide Web Conference. New York, USA: ACM Press, 2019: 2022-2032. | 
																													
																						| 39 | 陈雷, 赵耀帅, 林彦, 等.  交通流量预测的时间异质性图注意力网络. 山东大学学报(工学版), 2023, 53 (5): 29- 36. | 
																													
																						|  |  CHEN L ,  ZHAO Y S ,  LIN Y , et al.  Time heterogeneous graph attention network for traffic flow prediction. Journal of Shandong University (Engineering Science), 2023, 53 (5): 29- 36. | 
																													
																						| 40 | 施荣华, 金鑫, 胡超.  基于图注意力网络的方面级别文本情感分析. 计算机工程, 2022, 48 (2): 34- 39. | 
																													
																						|  |  SHI R H ,  JIN X ,  HU C .  Aspect-level text emotion analysis based on graph attention network. Computer Engineering, 2022, 48 (2): 34- 39. | 
																													
																						| 41 | 张晓晖, 马慧芳, 王文涛, 等.  基于跨会话知识图谱的图注意力网络推荐方法. 计算机工程, 2023, 49 (2): 136-142, 149.  URL
 | 
																													
																						|  |  ZHANG X H ,  MA H F ,  WANG W T , et al.  Graph attention network recommendation method based on cross-session knowledge graph. Computer Engineering, 2023, 49 (2): 136-142, 149.  URL
 | 
																													
																						| 42 | 万美含, 熊贇, 朱扬勇.  基于异质网络层次注意力机制的基因功能预测. 计算机工程, 2020, 46 (7): 43- 49.  URL
 | 
																													
																						|  |  WAN M H ,  XIONG Y ,  ZHU Y Y .  Gene function prediction based on hierarchical attention mechanism in heterogeneous network. Computer Engineering, 2020, 46 (7): 43- 49.  URL
 | 
																													
																						| 43 | 胡学钢, 董学春, 谢飞.  基于词向量空间模型的中文文本分类方法. 合肥工业大学学报(自然科学版), 2007, 30 (10): 1261- 1264. | 
																													
																						|  |  HU X G ,  DONG X C ,  XIE F .  Method of Chinese text categorization based on the word vector space model. Journal of Hefei University of Technology (Natural Science), 2007, 30 (10): 1261- 1264. | 
																													
																						| 44 | YI X T, LIU F H, ZHAN Z H. A digital game-based model for assessing computational thinking skills[C]//Proceedings of the 4th International Conference on Computer Science and Technologies in Education (CSTE). Washington D. C., USA: IEEE Press, 2022: 1-10. | 
																													
																						| 45 | LING C X, HUANG J, ZHANG H. AUC: a better measure than accuracy in comparing learning algorithms[C]//Proceedings of Conference of the Canadian Society for Computational Studies of Intelligence. Berlin, Germany: Springer, 2003: 329-341. | 
																													
																						| 46 | KIM Y, LI P, HUANG H. Convolutional neural networks for sentence classification[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: International Committee on Computational Linguistics, 2014: 1408. | 
																													
																						| 47 |  HOCHREITER S ,  SCHMIDHUBER J .  Long short-term memory. Neural Computation, 1997, 9 (8): 1735- 1780. | 
																													
																						| 48 | SHEN W Y, ZHAN Z H, LI C, et al. Constructing behavioral representation of computational thinking based on event graph: a new approach for learning analytics[C]//Proceedings of the 6th International Conference on Education and Multimedia Technology. New York, USA: ACM Press, 2022: 45-52. | 
																													
																						| 49 | 吴忭, 王戈.  协作编程中的计算思维发展轨迹研究——基于量化民族志的分析方法. 现代远程教育研究, 2019, (2): 76-84, 94. | 
																													
																						|  |  WU B ,  WANG G .  The development trajectory of computational thinking in cooperative programming: a quantitative ethnography approach. Modern Distance Education Research, 2019, (2): 76-84, 94. | 
																													
																						| 50 | 谢梦航. 面向小学编程社团的支架式教学模式构建与实践研究[D]. 重庆: 西南大学, 2023. | 
																													
																						|  | XIE M H. Research on the construction and practice of scaffolding teaching mode for elementary school programming club[D]. Chongqing: Southwest University, 2023. (in Chinese) | 
																													
																						| 51 | 周平红, 桑雪梅, 张屹, 等.  同伴互评支持的结对编程对学习者计算思维的影响研究. 电化教育研究, 2023, 44 (11): 105- 112. | 
																													
																						|  |  ZHOU P H ,  SANG X M ,  ZHANG Y , et al.  A study on the influence of peer assessment-supported pair programming on learners' computational thinking. e-Education research, 2023, 44 (11): 105- 112. |