1 |
马晓飞, 张尔赫. "数字中国"建设背景下高校学生计算思维培养研究: 热点、趋势与建议. 图书情报工作, 2023, 67 (13): 142- 151.
|
|
MA X F , ZHANG E H . Research on the cultivation of computational thinking of university students in the context of "digital China" construction: hot spots, trends and suggestions. Library and Intelligence Work, 2023, 67 (13): 142- 151.
|
2 |
詹泽慧, 钟煊妍, 邹萱萱, 等. 以评促教: 基于事理图谱的计算思维水平评价方法. 现代远距离教育, 2024, (1): 45- 57.
|
|
ZHAN Z H , ZHONG X Y , ZOU X X , et al. Assessing for teaching: a matter-of-fact mapping-based approach to evaluating computational thinking levels. Modern Distance Education, 2024, (1): 45- 57.
|
3 |
何文涛, 张梦丽, 逯行, 等. 人工智能视域下人机协同教学模式构建. 现代远距离教育, 2023, (2): 78- 87.
|
|
HE W T , ZHANG M L , LU X , et al. The construction of human-machine collaborative teaching mode from the perspective of artificial intelligence. Modern Distance Education, 2023, (2): 78- 87.
|
4 |
DATWANI K, OGAWA M B C, CROSBY M E. Understanding humans' cognitive processes during computational thinking through cognitive science[C]//Proceedings of International Conference on Human-Computer Interaction. Berlin, Germany: Springer, 2022: 242-260.
|
5 |
詹泽慧, 季瑜, 牛世婧, 等. ChatGPT嵌入教育生态的内在机理、表征形态及风险化解. 现代远距离教育, 2023, (4): 3- 13.
|
|
ZHAN Z H , JI Y , NIU S J , et al. The intrinsic mechanism, representational form, and risk mitigation of embedding ChatGPT into the education ecosystem. Modern Distance Education, 2023, (4): 3- 13.
|
6 |
RAMAZAN Y , GIZEM K Y F . The effect of generative Artificial Intelligence (AI)-based tool use on students' computational thinking skills, programming self-efficacy and motivation. Computers and Education: Artificial Intelligence, 2023, 4, 100147.
doi: 10.1016/j.caeai.2023.100147
|
7 |
龚芙蓉. ChatGPT类生成式AI对高校图书馆数字素养教育的影响探析. 图书情报知识, 2023, 40 (5): 97-106, 156.
|
|
GONG F R . The impact of generative AI like ChatGPT on digital literacy education in university libraries. Documentation, Information & Knowledge, 2023, 40 (5): 97-106, 156.
|
8 |
WING J M . Computational thinking. Communications of the ACM, 2006, 49 (3): 33- 35.
doi: 10.1145/1118178.1118215
|
9 |
WING J M . Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2008, 366 (1881): 3717- 3725.
doi: 10.1098/rsta.2008.0118
|
10 |
BRENNAN K, RESNICK M. New frameworks for studying and assessing the development of computational thinking[C]//Proceedings of the 2012 Annual Meeting of the American Educational Research Association. Vancouver, Canada: [s. n], 2012: 25.
|
11 |
CYNTHIA S, JOHN W. Computational thinking: the developing definition[C]//Proceedings of the 18th Annual Conference on Innovation and Technology in Computer Science Education. New York, USA: ACM Press, 2013: 1-23.
|
12 |
LIU C C , CHENG Y B , HUANG C W . The effect of simulation games on the learning of computational problem solving. Computers & Education, 2011, 57 (3): 1907- 1918.
|
13 |
何旭, 罗凌, 彭小云, 等. 基于CiteSpace的协作学习研究热点及趋势分析. 教育信息技术, 2022, (10): 35- 38.
|
|
HE X , LUO L , PENG X Y , et al. Research hotspots and trend analysis of collaborative learning based on CiteSpace. Educational Information Technology, 2022, (10): 35- 38.
|
14 |
AJJAWI R , BOUD D . Researching feedback dialogue: an interactional analysis approach. Assessment & Evaluation in Higher Education, 2017, 42 (2): 252- 265.
|
15 |
首新, 田伟, 李健, 等. 基于过程数据的人机"虚拟代理"协作问题解决测评研究——以PISA中国四地区为例. 现代教育技术, 2023, 33 (10): 86- 97.
|
|
SHOU X , TIAN W , LI J , et al. Research of on the man-machine "virtual agents" of collaborative problem solving assessment based on process data——a case study of PISA test in four regions of China. Modern Educational Technology, 2023, 33 (10): 86- 97.
|
16 |
LICHTENTHALER U . Substitute or synthesis: the interplay between human and artificial intelligence. Research-Technology Management, 2018, 61 (5): 12- 14.
doi: 10.1080/08956308.2018.1495962
|
17 |
梁云真, 刘瑞星, 任丽玲. 面向计算思维培养的人机协同精准教学模式研究——以小学六年级信息技术课"丝绸之路大闯关" 为例. 现代教育技术, 2022, 32 (3): 51- 60.
|
|
LIANG Y Z , LIU R X , REN L L . Research on precision teaching model of human-computer collaboration for the cultivation of computational thinking——taking the sixth grade information technology class "silk road breakthrough" as an example. Modern Educational Technology, 2022, 32 (3): 51- 60.
|
18 |
陈赞安, 李宁宇, 尹以晴, 等. 从算法到参与构建计算模型: 人机协同视域下计算思维的内涵演进与能力结构. 远程教育杂志, 2021, 39 (4): 34- 41.
|
|
CHEN Z A , LI N Y , YIN Y Q , et al. From algorithm to participation in building computational models: concept evolution and capability structure of computational thinking in the perspective of human-machine coordinated. Journal of Distance Education, 2021, 39 (4): 34- 41.
|
19 |
陈健鹏, 马建辉, 王怡君. 基于多轮交互的人机对话系统综述. 南京信息工程大学学报(自然科学版), 2019, 11 (3): 256- 268.
|
|
CHEN J P , MA J H , WANG Y J . A survey of human-computer dialogue system based on multiple-round interaction. Journal of Nanjing University of Information Engineering (Natural Science Edition), 2019, 11 (3): 256- 268.
|
20 |
詹泽慧. 基于智能Agent的远程学习者情感与认知识别模型——眼动追踪与表情识别技术支持下的耦合. 现代远程教育研究, 2013, (5): 100- 105.
|
|
ZHAN Z H . An emotional and cognitive recognition model for distance learners based on intelligent Agent—the coupling of eye tracking and expression recognition techniques. Modern Distance Education Research, 2013, (5): 100- 105.
|
21 |
方海光. 教育大数据: 迈向未来学校的智慧教育. 北京: 电子工业出版社, 2019.
|
|
FANG H G . Education big data: smart education for future schools. Beijing: Publishing House of Electronics Industry, 2019.
|
22 |
刘三女牙, 杨宗凯. 量化学习——数据驱动下的学习行为分析. 北京: 科学出版社, 2016.
|
|
LIU S N Y , YANG Z K . Learning behavior analysis driven by quantitative learning data. Beijing: Science Press, 2016.
|
23 |
PANG B, LEE L, VAITHYANATHAN S. Thumbs up? : sentiment classification using machine learning techniques[C]//Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing. Morristown, USA: Association for Computational Linguistics, 2002: 79-86.
|
24 |
邹晓辉. 朴素贝叶斯算法在文本分类中的应用. 数字技术与应用, 2017, (12): 132- 133.
|
|
ZOU X H . Application of Naive Bayesian algorithm in text classification. Digital Technology & Application, 2017, (12): 132- 133.
|
25 |
韩坤, 潘宏鹏, 刘忠轶. 融合BERT多层次特征的短视频网络舆情情感分析研究. 计算机科学与探索, 2024, 18 (4): 1010- 1020.
|
|
HAN K , PAN H P , LIU Z T . Research on sentiment analysis of short video network public opinion by intergrating BERT multi-level features. Journal of Frontiers of Computer Science and Technology, 2024, 18 (4): 1010- 1020.
|
26 |
|
27 |
ZHANG Y Z , TIWARI P , SONG D W , et al. Learning interaction dynamics with an interactive LSTM for conversational sentiment analysis. Neural Networks, 2021, 133, 40- 56.
|
28 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2024-01-15]. https://arxiv.org/pdf/1810.04805.
|
29 |
徐绪堪, 印家伟, 王晓娇. 基于BERT模型的"互联网+政务" 群众留言文本热点追踪研究. 情报杂志, 2022, 41 (9): 136-142, 78.
|
|
XU X K , YIN J W , WANG X J . Research on hotspot tracking of "Internet + government affairs" mass message text based on BERT model. Journal of Intelligence, 2022, 41 (9): 136-142, 78.
|
30 |
UTO M, XIE Y K, UENO M. Neural automated essay scoring incorporating handcrafted features[C]//Proceedings of the 28th International Conference on Computational Linguistics. Stroudsburg, USA: International Committee on Computational Linguistics, 2020: 6077-6088.
|
31 |
WU Z Y , LIANG Q Y , ZHAN Z H . Course recommendation based on enhancement of meta-path embedding in heterogeneous graph. Applied Sciences, 2023, 13 (4): 2404.
|
32 |
孙悦, 赵宇红, 薛婷. 基于异质图注意力网络的重叠社区发现方法. 计算机工程与设计, 2023, 44 (12): 3649- 3655.
|
|
SUN Y , ZHAO Y H , XUE T . Overlapping community discovery method based on heterogeneous graph attention network. Computer Engineering and Design, 2023, 44 (12): 3649- 3655.
|
33 |
CHANG Y M , CHEN C , HU W B , et al. Megnn: meta-path extracted graph neural network for heterogeneous graph representation learning. Knowledge-Based Systems, 2022, 235, 107611.
|
34 |
周京艳, 刘如, 李佳娱, 等. 情报事理图谱的概念界定与价值分析. 情报杂志, 2018, 37 (5): 31-36, 42.
|
|
ZHOU J Y , LIU R , LI J Y , et al. Study on the concept and value of intelligence event evolutionary graph. Journal of Intelligence, 2018, 37 (5): 31-36, 42.
|
35 |
魏建香, 梁帅, 朱云霞, 等. 事理图谱研究进展. 情报资料工作, 2023, 44 (6): 35- 43.
|
|
WEI J X , LIANG S , ZHU Y X , et al. Progress in the study of event evolution graph. Information and Documentation Services, 2023, 44 (6): 35- 43.
|
36 |
|
37 |
陈海涵, 吴国栋, 李景霞, 等. 基于注意力机制的深度学习推荐研究进展. 计算机工程与科学, 2021, 43 (2): 370- 380.
|
|
CHEN H H , WU G D , LI J X , et al. Research advances on deep learning recommendation based on attention mechanism. Computer Engineering & Science, 2021, 43 (2): 370- 380.
|
38 |
WANG X, JI H Y, SHI C, et al. Heterogeneous graph attention network[C]//Proceedings of the World Wide Web Conference. New York, USA: ACM Press, 2019: 2022-2032.
|
39 |
陈雷, 赵耀帅, 林彦, 等. 交通流量预测的时间异质性图注意力网络. 山东大学学报(工学版), 2023, 53 (5): 29- 36.
|
|
CHEN L , ZHAO Y S , LIN Y , et al. Time heterogeneous graph attention network for traffic flow prediction. Journal of Shandong University (Engineering Science), 2023, 53 (5): 29- 36.
|
40 |
施荣华, 金鑫, 胡超. 基于图注意力网络的方面级别文本情感分析. 计算机工程, 2022, 48 (2): 34- 39.
|
|
SHI R H , JIN X , HU C . Aspect-level text emotion analysis based on graph attention network. Computer Engineering, 2022, 48 (2): 34- 39.
|
41 |
张晓晖, 马慧芳, 王文涛, 等. 基于跨会话知识图谱的图注意力网络推荐方法. 计算机工程, 2023, 49 (2): 136-142, 149.
URL
|
|
ZHANG X H , MA H F , WANG W T , et al. Graph attention network recommendation method based on cross-session knowledge graph. Computer Engineering, 2023, 49 (2): 136-142, 149.
URL
|
42 |
万美含, 熊贇, 朱扬勇. 基于异质网络层次注意力机制的基因功能预测. 计算机工程, 2020, 46 (7): 43- 49.
URL
|
|
WAN M H , XIONG Y , ZHU Y Y . Gene function prediction based on hierarchical attention mechanism in heterogeneous network. Computer Engineering, 2020, 46 (7): 43- 49.
URL
|
43 |
胡学钢, 董学春, 谢飞. 基于词向量空间模型的中文文本分类方法. 合肥工业大学学报(自然科学版), 2007, 30 (10): 1261- 1264.
|
|
HU X G , DONG X C , XIE F . Method of Chinese text categorization based on the word vector space model. Journal of Hefei University of Technology (Natural Science), 2007, 30 (10): 1261- 1264.
|
44 |
YI X T, LIU F H, ZHAN Z H. A digital game-based model for assessing computational thinking skills[C]//Proceedings of the 4th International Conference on Computer Science and Technologies in Education (CSTE). Washington D. C., USA: IEEE Press, 2022: 1-10.
|
45 |
LING C X, HUANG J, ZHANG H. AUC: a better measure than accuracy in comparing learning algorithms[C]//Proceedings of Conference of the Canadian Society for Computational Studies of Intelligence. Berlin, Germany: Springer, 2003: 329-341.
|
46 |
KIM Y, LI P, HUANG H. Convolutional neural networks for sentence classification[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: International Committee on Computational Linguistics, 2014: 1408.
|
47 |
HOCHREITER S , SCHMIDHUBER J . Long short-term memory. Neural Computation, 1997, 9 (8): 1735- 1780.
|
48 |
SHEN W Y, ZHAN Z H, LI C, et al. Constructing behavioral representation of computational thinking based on event graph: a new approach for learning analytics[C]//Proceedings of the 6th International Conference on Education and Multimedia Technology. New York, USA: ACM Press, 2022: 45-52.
|
49 |
吴忭, 王戈. 协作编程中的计算思维发展轨迹研究——基于量化民族志的分析方法. 现代远程教育研究, 2019, (2): 76-84, 94.
|
|
WU B , WANG G . The development trajectory of computational thinking in cooperative programming: a quantitative ethnography approach. Modern Distance Education Research, 2019, (2): 76-84, 94.
|
50 |
谢梦航. 面向小学编程社团的支架式教学模式构建与实践研究[D]. 重庆: 西南大学, 2023.
|
|
XIE M H. Research on the construction and practice of scaffolding teaching mode for elementary school programming club[D]. Chongqing: Southwest University, 2023. (in Chinese)
|
51 |
周平红, 桑雪梅, 张屹, 等. 同伴互评支持的结对编程对学习者计算思维的影响研究. 电化教育研究, 2023, 44 (11): 105- 112.
|
|
ZHOU P H , SANG X M , ZHANG Y , et al. A study on the influence of peer assessment-supported pair programming on learners' computational thinking. e-Education research, 2023, 44 (11): 105- 112.
|