[1] WANG S J, CAO L B, WANG Y, et al.A survey on session-based recommender systems[J].ACM Computing Surveys, 2022, 54(7):154. [2] ZHOU H C, TAN Q Y, HUANG X, et al.Temporal augmented graph neural networks for session-based recommendations[C]//Proceedings of the 44th International Conference on Research and Development in Information Retrieval.New York, USA:ACM Press, 2021:1798-1802. [3] 陈恩华, 方宝富.基于物品嵌入向量的会话型推荐算法[J].计算机工程, 2021, 47(7):74-80. CHEN E H, FANG B F.Session-based recommendation algorithm with Item2Vec[J].Computer Engineering, 2021, 47(7):74-80.(in Chinese) [4] 陈聪, 张伟, 王骏.带有时间预测辅助任务的会话式序列推荐[J].计算机学报, 2021, 44(9):1841-1853. CHEN C, ZHANG W, WANG J.Session-based sequential recommendation with auxiliary time prediction[J].Chinese Journal of Computers, 2021, 44(9):1841-1853.(in Chinese) [5] 李琳, 唐守廉.基于多层注意力表示的音乐推荐模型[J].电子学报, 2020, 48(9):1672-1679. LI L, TANG S L.Hierarchical attention representation model for music recommendation[J].Acta Electronica Sinica, 2020, 48(9):1672-1679.(in Chinese) [6] RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L.Factorizing personalized Markov chains for next-basket recommendation[C]//Proceedings of the 19th International Conference on World Wide Web.New York, USA:ACM Press, 2010:811-820. [7] REN P J, CHEN Z M, LI J, et al.RepeatNet:a repeat aware neural recommendation machine for session-based recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2019:4806-4813. [8] 高茂庭, 徐彬源.基于循环神经网络的推荐算法[J].计算机工程, 2019, 45(8):198-202, 209. GAO M T, XU B Y.Recommendation algorithm based on recurrent neural network[J].Computer Engineering, 2019, 45(8):198-202, 209.(in Chinese) [9] HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al.Session-based recommendations with recurrent neural networks[C]//Proceedings of the 4th International Conference on Learning Representation.Washington D.C., USA:[s.n], 2016:1-10. [10] LI J, REN P J, CHEN Z M, et al.Neural attentive session-based recommendation[C]//Proceedings of Conference on Information and Knowledge Management.New York, USA:ACM Press, 2017:1419-1428. [11] LIU Q, ZENG Y F, MOKHOSI R, et al.STAMP:short-term attention/memory priority model for session-based recommendation[C]//Proceedings of the 24th International Conference on Knowledge Discovery & Data Mining.New York, USA:ACM Press, 2018:1831-1839. [12] CHOI M J, KIM J H, LEE J, et al.S-walk:accurate and scalable session-based recommendation with random walks[EB/OL].[2021-11-20].https://arxiv.org/abs/2201.01091v1. [13] JIANG Y B, MA H F, LIU Y H, et al.Enhancing social recommendation via two-level graph attentional networks[J].Neurocomputing, 2021, 449:71-84. [14] 徐增敏, 陈凯, 郭威伟, 等.面向轻量级卷积网络的激活函数与压缩模型[J].计算机工程, 2022, 48(5):242-250. XU Z M, CHEN K, GUO W W, et al.Activation function and compression model for lightweight convolutional network[J].Computer Engineering, 2022, 48(5):242-250.(in Chinese) [15] ZHANG X H, MA H F, GAO Z H, et al.Enhancing session-based recommendation with global context information and knowledge graph[C]//Proceedings of the 27 International Conference on Database Systems for Advanced Applications.Berlin, Germany:Springer, 2022:281-288. [16] LI Y, CHEN T, ZHANG P F, et al.Lightweight self-attentive sequential recommendation[C]//Proceedings of the 30th International Conference on Information & Knowledge Management.New York, USA:ACM Press, 2021:967-977. [17] WU S, TANG Y Y, ZHU Y Q, et al.Session-based recommendation with graph neural networks[C]//Proceedings of Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2019:346-353. [18] XU C F, ZHAO P P, LIU Y C, et al.Graph contextualized self-attention network for session-based recommendation[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence.Washington D.C., USA:[s.n.], 2019:3940-3946. [19] QIU R H, HUANG Z, LI J J, et al.Exploiting cross-session information for session-based recommendation with graph neural networks[J].ACM Transactions on Information Systems, 2020, 38(3):22. [20] WANG X, HE X N, CAO Y X, et al.KGAT:knowledge graph attention network for recommendation[C]//Proceedings of the 25th International Conference on Knowledge Discovery & Data Mining.New York, USA:ACM Press, 2019:950-958. [21] LIN Y K, LIU Z Y, SUN M S, et al.Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2015:2181-2187. [22] QIU J Z, TANG J, MA H, et al.DeepInf:social influence prediction with deep learning[C]//Proceedings of the 24th International Conference on Knowledge Discovery & Data Mining.New York, USA:ACM Press, 2018:2110-2119. [23] CHANG J X, GAO C, ZHENG Y, et al.Sequential recommendation with graph neural networks[C]//Proceedings of the 44th International Conference on Research and Development in Information Retrieval.New York, USA:ACM Press, 2021:378-387. [24] GLOROT X, BENGIO Y.Understanding the difficulty of training deep feedforward neural networks[J].Journal of Machine Learning Research, 2010, 9:249-256. [25] KINGMA D P, BA J L.Adam:a method for stochastic optimization[EB/OL].[2021-11-20].https://arxiv.org/pdf/1412.6980.pdf. |