作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2020, Vol. 46 ›› Issue (7): 43-49. doi: 10.19678/j.issn.1000-3428.0054805

• 人工智能与模式识别 • 上一篇    下一篇

基于异质网络层次注意力机制的基因功能预测

万美含1,2,3, 熊贇1,2,3, 朱扬勇1,2,3   

  1. 1. 复旦大学 计算机科学技术学院, 上海 200433;
    2. 上海市数据科学重点实验室, 上海 200433;
    3. 上海先进通信与数据科学研究院, 上海 200433
  • 收稿日期:2019-05-05 修回日期:2019-07-15 发布日期:2019-07-23
  • 作者简介:万美含(1994-),女,硕士研究生,主研方向为数据挖掘;熊贇、朱扬勇,教授、博士生导师。
  • 基金资助:
    国家自然科学基金(U1636207,91546105);上海市科技发展基金(16JC1400801)。

Gene Function Prediction Based on Hierarchical Attention Mechanism in Heterogeneous Network

WAN Meihan1,2,3, XIONG Yun1,2,3, ZHU Yangyong1,2,3   

  1. 1. School of Computer Science and Technology, Fudan University, Shanghai 200433, China;
    2. Shanghai Key Laboratory of Data Science, Shanghai 200433, China;
    3. Shanghai Institute of Advanced Communications and Data Science, Shanghai 200433, China
  • Received:2019-05-05 Revised:2019-07-15 Published:2019-07-23

摘要: 基因组测序技术的快速发展使得生物数据库中的基因和基因组序列数据数量迅速增加,但其中仍有大量基因功能是未知的。为此,提出基于异质网络层次注意力机制的基因节点表示学习方法HAGE,用以预测基因功能。结合多种来源的数据集,构建一个具有节点属性的基因功能相关异质网络,在网络中使用层次注意力机制为每一个基因节点学习一个节点嵌入向量,该向量可用于后续的基因功能预测等任务。实验结果表明,与GraphSAGE和GAT等方法相比,HAGE具有更好的预测性能。

关键词: 基因功能预测, 异质信息网络, 注意力机制, 网络表示学习, 网络嵌入

Abstract: The rapid development of genome sequencing has led to the explosive growth of gene and genomic sequence data in biological databases,in which functions of a large number of genes still remain unknown.Therefore,this paper proposes a gene node representation learning method,HAGE,based on hierarchical attention mechanism in heterogeneous network to predict the function of genes.Firstly,a gene function-related heterogeneous network with node attributes is constructed.Then the hierarchical attention mechanism is used in network to enable each gene node to learn a node embedding vector,which can be used for subsequent tasks such as gene function prediction.Experimental results show that the proposed method has better performance than GraphSAGE,GAT and other methods.

Key words: gene function prediction, heterogeneous information network, attention mechanism, network representation learning, network embedding

中图分类号: