作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (11): 340-354. doi: 10.19678/j.issn.1000-3428.0070435

• 开发研究与工程应用 • 上一篇    下一篇

禁忌搜索和NSGA-Ⅱ算法融合求解多车间作业任务协同调度问题

付威1, 纪青然1,*(), 陈录城2,3, 初佃辉1,2, 涂志莹1,2, 秦承刚2,3, 董李扬2,3   

  1. 1. 哈尔滨工业大学(威海)计算机科学与技术学院, 山东 威海 264209
    2. 大规模个性化定制系统与技术全国重点实验室, 山东 青岛 266426
    3. 卡奥斯工业智能研究院(青岛)有限公司, 山东 青岛 266426
  • 收稿日期:2024-10-08 修回日期:2024-12-03 出版日期:2025-11-15 发布日期:2025-11-26
  • 通讯作者: 纪青然
  • 基金资助:
    国家重点研发计划(2023YFB3307500)

Tabu Search and NSGA-Ⅱ Algorithm Fusion to Solve the Problem of Multi-workshop Job Tasks Collaboration Scheduling

FU Wei1, JI Qingran1,*(), CHEN Lucheng2,3, CHU Dianhui1,2, TU Zhiying1,2, QIN Chenggang2,3, DONG Liyang2,3   

  1. 1. School of Computer Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, Shandong, China
    2. State Key Laboratory of Massive Personalized Customization System and Technology, Qingdao 266426, Shandong, China
    3. COSMO Industrial Intelligence Research Institute (Qingdao) Co., Ltd., Qingdao 266426, Shandong, China
  • Received:2024-10-08 Revised:2024-12-03 Online:2025-11-15 Published:2025-11-26
  • Contact: JI Qingran

摘要:

面向多工艺式布局车间, 针对不同工艺之间存在共有工序会导致资源浪费的问题, 建立以最小化最大完工时间、最小化总加工成本以及最小化总加工能耗为目标的多车间作业任务协同调度多目标优化模型, 旨在提高车间资源利用率, 实现降本增效。提出一种新的禁忌搜索与快速非支配排序遗传融合算法TSNSGA-Ⅱ, 将遗传算法交叉后的染色体采用禁忌搜索变异策略产生新个体, 增强搜索空间的探索能力, 最后采用层次分析法从工厂角度权衡3个目标以选择最优调度方案。首先在模拟数据集上验证TSNSGA-Ⅱ算法的有效性, 然后在不同规模的标准数据集上对比TSNSGA-Ⅱ算法与MOGWO、ENSGA-Ⅱ元启发式算法的性能, 并与单独的NSGA-Ⅱ和单独的TS模块进行消融对比。实验结果表明, 该算法在以总加工成本为最高优先级时, 在Brandimarte标准数据集中90%的mk算例上都获得了最低的总加工成本, 与ENSGA-Ⅱ算法相比求解时间更短, 与改进前的NSGA-Ⅱ算法相比提高了1.6%;在以最大完工时间为最高优先级的情况下, 该算法在80%数据集上获得了最小的最大完工时间, 与改进前的NSGA-Ⅱ算法相比提高了2.2%。

关键词: 工艺式布局车间, 作业任务协同, 多目标优化, 禁忌搜索, NSGA-Ⅱ算法

Abstract:

Common operations between different processes in a multi-process layout workshop lead to resource waste. To address this problem, this study establishes a multi-objective optimization model for the collaborative scheduling of multi-workshop job tasks with the objectives of minimizing the makespan, total processing cost, and total processing energy consumption, to improve the utilization rate of workshop resources and achieve cost reduction and efficiency improvement. The study also proposes a new genetic fusion algorithm, TSNSGA-Ⅱalgorithm, which combines tabu search and fast non-dominated sorting. After the crossover of the genetic algorithm, the chromosomes are used to generate new individuals using the tabu search mutation strategy to enhance the exploration ability of the search space. Finally, a hierarchical analysis method is used to weigh the three objectives from the factory perspective to select the optimal scheduling solution. The effectiveness of TSNSGA-Ⅱ algorithm is verified on a simulated dataset, and its performance is compared to those of the MOGWO and ENSGA-Ⅱ metaheuristic algorithms on standard datasets of different sizes. Next, ablation comparison is performed with a single NSGA-Ⅱ and a single TS module. The results show that when the total processing cost is the highest priority, the algorithm obtains the lowest total processing cost on 90% of the mk examples in Brandimarte dataset, and the solution time is shorter than that of the ENSGA-Ⅱ algorithm, which is 1.6% higher than that of the NSGA-Ⅱ algorithm before improvement. When the makespan is the highest priority, the proposed algorithm obtains the minimum makespan on 80% of the datasets, which is 2.2% higher than that of the NSGA-Ⅱ algorithm before improvement.

Key words: process layout workshop, job tasks collaboration, multi-objective optimization, tabu search, NSGA-Ⅱ algorithm