作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (11): 355-365. doi: 10.19678/j.issn.1000-3428.0069627

• 开发研究与工程应用 • 上一篇    下一篇

机动意图可知的结构化道路车辆轨迹预测方法研究

颜伏伍1,2,3, 王占彬1,2,3, 胡杰1,2,3, 徐文才1,2,3,*(), 唐郁轩1,2,3, 陈楠1,2,3   

  1. 1. 武汉理工大学现代汽车零部件技术湖北省重点实验室, 湖北 武汉 430070
    2. 武汉理工大学汽车零部件技术湖北省协同创新中心, 湖北 武汉 430070
    3. 新能源与智能网联车湖北工程技术研究中心, 湖北 武汉 430070
  • 收稿日期:2024-03-20 修回日期:2024-04-24 出版日期:2025-11-15 发布日期:2024-08-07
  • 通讯作者: 徐文才
  • 基金资助:
    湖北省重大专项(2022AAA001)

Research on Structured Road Vehicle Trajectory Prediction Method with Recognizable Maneuver Intentions

YAN Fuwu1,2,3, WANG Zhanbin1,2,3, HU Jie1,2,3, XU Wencai1,2,3,*(), TANG Yuxuan1,2,3, CHEN Nan1,2,3   

  1. 1. Hubei Key Laboratory of Modern Auto Parts Technology, Wuhan University of Technology, Wuhan 430070, Hubei, China
    2. Auto Parts Technology Hubei Collaborative Innovation Center, Wuhan University of Technology, Wuhan 430070, Hubei, China
    3. Hubei Technology Research Center of New Energy and Intelligent Connected Vehicle Engineering, Wuhan 430070, Hubei, China
  • Received:2024-03-20 Revised:2024-04-24 Online:2025-11-15 Published:2024-08-07
  • Contact: XU Wencai

摘要:

准确地预测周围车辆的未来轨迹对于自动驾驶汽车(ADV)理解复杂动态环境至关重要。然而, 现有的池化策略仅依赖于欧氏坐标系表征下的历史位置特征编码, 难以有效地捕捉车辆的机动意图等隐变量特征。为此, 提出一种机动意图可知的车辆轨迹预测方法。首先, 构建基于极坐标系特征表征和高阶特征编码的池化机制, 以捕捉车辆间的相互依赖关系; 其次, 设计基于高斯概率分布的位置和加速度机动类型判别策略, 以准确地模拟结构化道路场景下车辆的预期机动; 然后, 设计基于随机采样的规划轨迹与历史轨迹耦合编码模块, 在增强模型交互特征捕获性能的同时避免冗余编码; 最后, 基于编码器-解码器框架构建轨迹预测模型StructNet, 并基于真实道路数据集NGSIM验证算法的有效性。多组对比实验和消融实验结果表明, 所提出的车辆轨迹预测模型在5 s时的均方根误差指标低于3.5 m, 相较于基准模型提升15.3%, 预测准确率得到显著提高。

关键词: 自动驾驶汽车, 极坐标系, 特征池化, 长短期记忆, 轨迹预测

Abstract:

Accurately predicting the future trajectories of surrounding vehicles is crucial for Autonomous Driving Vehicle (ADV) to understand complex dynamic environments. However, existing pooling strategies rely solely on historical position feature encoding in the Euclidean coordinate system, which fails to capture latent variables, such as vehicle maneuver intentions, effectively. To address this issue, this study proposes a vehicle trajectory prediction method that considers maneuver intentions. First, this study constructs a pooling mechanism based on polar coordinate feature representation and high-order feature encoding to capture intervehicle dependencies. Next, a position and acceleration maneuver type discrimination strategy is designed based on Gaussian probability distribution to simulate the expected maneuvers in structured road scenarios accurately. Furthermore, the study develops a trajectory planning and historical trajectory coupling encoding module based on random sampling, which enhances the interaction feature capture capabilities of the model while avoiding redundant encoding. Finally, the study builds a trajectory prediction model, StructNet, based on an encoder-decoder framework and validates the effectiveness of the algorithm on real-world road datasets from NGSIM. Multiple comparative and ablation experiments demonstrate that the proposed vehicle trajectory prediction model achieves a root mean square error of less than 3.5 m at 5 s, representing a 15.3% improvement over the baseline model, thereby significantly enhancing prediction accuracy.

Key words: Autonomous Driving Vehicle (ADV), polar coordinate system, feature pooling, Long Short-Term Memory (LSTM), trajectory prediction