1 |
ATZ K , GRISONI F , SCHNEIDER G . Geometric deep learning on molecular representations. Nature Machine Intelligence, 2021, 3, 1023- 1032.
doi: 10.1038/s42256-021-00418-8
|
2 |
DE ALMEIDA A F , MOREIRA R , RODRIGUES T . Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry, 2019, 3, 589- 604.
doi: 10.1038/s41570-019-0124-0
|
3 |
JUMPER J , EVANS R , PRITZEL A , et al. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596 (7873): 583- 589.
doi: 10.1038/s41586-021-03819-2
|
4 |
VAMATHEVAN J , CLARK D , CZODROWSKI P , et al. Applications of machine learning in drug discovery and development. Nature Reviews Drug Discovery, 2019, 18, 463- 477.
doi: 10.1038/s41573-019-0024-5
|
5 |
朱洪翔, 傅钰江, 李雪, 等. 基于神经网络的分子性质预测算法研究进展. 科学技术与工程, 2023, 23 (19): 8061- 8070.
doi: 10.3969/j.issn.1671-1815.2023.19.003
|
|
ZHU H X , FU Y J , LI X , et al. Overview of molecular property prediction algorithms with neural network. Science Technology and Engineering, 2023, 23 (19): 8061- 8070.
doi: 10.3969/j.issn.1671-1815.2023.19.003
|
6 |
李林洁. 基于机器学习的分子性质预测与生成技术研究[D]. 成都: 电子科技大学, 2023.
|
|
LI L J. Research on molecular property prediction and generation technology based on machine learning[D]. Chengdu: University of Electronic Science and Technology of China, 2023. (in Chinese)
|
7 |
BUTLER K T , DAVIES D W , CARTWRIGHT H , et al. Machine learning for molecular and materials science. Nature, 2018, 559, 547- 555.
doi: 10.1038/s41586-018-0337-2
|
8 |
于佳卉. 基于深度学习的有机化合物合成可行性预测[D]. 杭州: 浙江大学, 2022.
|
|
YU J H. Feasibility prediction of organic compound synthesis based on deep learning[D]. Hangzhou: Zhejiang University, 2022. (in Chinese)
|
9 |
NEESE F . Prediction of molecular properties and molecular spectroscopy with density functional theory: from fundamental theory to exchange-coupling. Coordination Chemistry Reviews, 2009, 253 (5/6): 526- 563.
|
10 |
|
11 |
|
12 |
LU C Q , LIU Q , WANG C , et al. Molecular property prediction: a multilevel quantum interactions modeling perspective. Artificial Intelligence, 2019, 33 (1): 1052- 1060.
doi: 10.48550/arXiv.1906.11081
|
13 |
LI S L , ZHOU J B , XU T , et al. GeomGCL: geometric graph contrastive learning for molecular property prediction. Artificial Intelligence, 2022, 36 (4): 4541- 4549.
|
14 |
HU W, LIU B, GOMES J, et al. Strategies for pre-training graph neural networks[C]//Proceedings of International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2020: 451-462.
|
15 |
RONG Y, BIAN Y, XU T, et al. Self-supervised graph transformer on large-scale molecular data[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2020: 12559-12571.
|
16 |
BUENO P R , BENITES T A , DAVIS J J . The mesoscopic electrochemistry of molecular junctions. Scientific Reports, 2016, 6, 18400.
doi: 10.1038/srep18400
|
17 |
LIU Z T , LIN L Q , JIA Q Q , et al. Transferable multilevel attention neural network for accurate prediction of quantum chemistry properties via multitask learning. Journal of Chemical Information and Modeling, 2021, 61 (3): 1066- 1082.
doi: 10.1021/acs.jcim.0c01224
|
18 |
周彪. 基于图对比学习的分子性质预测研究[D]. 合肥: 合肥学院, 2023.
|
|
ZHOU B. Research on molecular property prediction based on graph contrastive learning[D]. Hefei: Hefei University, 2023. (in Chinese)
|
19 |
卫平柱. 基于邻域交互图卷积神经网络的化学分子性质预测研究[D]. 合肥: 合肥学院, 2023.
|
|
WEI P Z. Prediction of chemical molecular properties based on convolution neural network of neighborhood interactive graph[D]. Hefei: Hefei University, 2023. (in Chinese)
|
20 |
汪维泰, 王晓强, 李雷孝, 等. 时空图神经网络在交通流预测研究中的构建与应用综述. 计算机工程与应用, 2024, 64 (8): 31- 45.
doi: 10.3778/j.issn.1002-8331.2307-0133
|
|
WANG W T , WANG X Q , LI L X , et al. Overview of the construction and application of spatiotemporal graph neural networks in traffic flow prediction research. Computer Engineering and Applications, 2024, 64 (8): 31- 45.
doi: 10.3778/j.issn.1002-8331.2307-0133
|
21 |
WIEDER O , KOHLBACHER S , KUENEMANN M , et al. A compact review of molecular property prediction with graph neural networks. Drug Discovery Today Technologies, 2020, 37, 1- 12.
doi: 10.1016/j.ddtec.2020.11.009
|
22 |
ROGERS D , HAHN M . Extended-connectivity fingerprints. Journal of Chemical Information and Modeling, 2010, 50 (5): 742- 754.
doi: 10.1021/ci100050t
|
23 |
SONG Y, ZHENG S J, NIU Z M, et al. Communicative representation learning on attributed molecular graphs[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence. Washington D. C., USA: IEEE Press, 2020: 331-332.
|
24 |
ZHANG Z Q , GUAN J H , ZHOU S G . FraGAT: a fragment-oriented multi-scale graph attention model for molecular property prediction. Bioinformatics, 2021, 37 (18): 2981- 2987.
doi: 10.1093/bioinformatics/btab195
|
25 |
ZHANG Z, LIU Q, WANG H, et al. Motif-based graph self-supervised learning for molecular property prediction[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2021: 15870-15882.
|
26 |
SUN M Y, XING J, WANG H J, et al. MoCL: data-driven molecular fingerprint via knowledge-aware contrastive learning from molecular graph[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021: 3585-3594.
|
27 |
丁婧娴, 李翔, 孙纪舟, 等. 融合多特征和双向图分类的专家推荐方法. 数据采集与处理, 2023, 38 (5): 1214- 1225.
doi: 10.16337/j.1004-9037.2023.05.019
|
|
DING J X , LI X , SUN J Z , et al. Expert recommendation method combining multi-features and Bi-directional graph classification. Journal of Data Acquisition and Processing, 2023, 38 (5): 1214- 1225.
doi: 10.16337/j.1004-9037.2023.05.019
|
28 |
吕超, 孟相浩, 崔格格, 等. 基于图分类的智能车辆复杂场景风险等级评估与建模. 北京理工大学学报, 2023, 43 (7): 726- 733.
doi: 10.15918/j.tbit1001-0645.2022.169
|
|
LV C , MENG X H , CUI G G , et al. Risk level estimating and modeling of complex scenarios for intelligent vehicles based on graph classification. Transactions of Beijing Institute of Technology, 2023, 43 (7): 726- 733.
doi: 10.15918/j.tbit1001-0645.2022.169
|
29 |
|
30 |
ZHANG X X, CUI P, XU R Z, et al. Deep stable learning for out-of-distribution generalization[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, USA: IEEE Press, 2021: 5372-5382.
|
31 |
CHEN J A, SHEN D H, CHEN W Z, et al. HiddenCut: simple data augmentation for natural language understanding with better generalizability[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2021: 1211-1223.
|
32 |
卢敏, 原子婷. 结合图对比学习的多图神经网络会话推荐方法. 计算机科学, 2024, 51 (5): 54- 61.
doi: 10.11896/jsjkx.230300092
|
|
LU M , YUAN Z T . Multi graph neural network session recommendation method based on graph contrastive learning. Computer Science, 2024, 51 (5): 54- 61.
doi: 10.11896/jsjkx.230300092
|
33 |
|
34 |
|
35 |
|
36 |
HU W, FEY M, ZITNIK M, et al. Open graph bench-mark: datasets for machine learning on graphs[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2021: 22118-22133.
|
37 |
|
38 |
|
39 |
HAMILTON W L, YING Z, LESKOVEC J. Inductive representation learning on large graphs[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2017: 578-587.
|
40 |
|
41 |
WU F, SOUZA A, ZHANG T, et al. Simplifying graph convolutional networks[C]//Proceedings of International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2000: 6861-6871.
|
42 |
SONG Y, ZHENG S J, NIU Z M, et al. Communicative representation learning on attributed molecular graphs[C]//Proceedings of 20th International Joint Conference on Artificial Intelligence and 17th Pacific Rim International Conference on Artificial Intelligence. Washington D. C., USA: IEEE Press, 2020: 2831-2838.
|
43 |
XU K, LI C, TIAN Y, et al. Representation learning on graphs with jumping knowledge networks[C]//Proceedings of International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2018: 5453-5462.
|
44 |
YING R, YOU J, MORRIS C, et al. Hierarchical graph representation learning with differentiable pooling[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2018: 31-45.
|