1 |
BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the Annual Conference on Neural Information Processing Systems. New York, USA: Curran Associates Inc., 2013: 2799-2807.
|
2 |
WANG Z C, LV Q S, LAN X H, et al. Cross-lingual knowledge graph alignment via graph convolutional networks[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2018: 349-357.
|
3 |
CHEN M H, TIAN Y T, YANG M H, et al. Multilingual knowledge graph embeddings for cross-lingual knowledge alignment[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2017: 1511-1517.
|
4 |
ZHU H, XIE R B, LIU Z Y, et al. Iterative entity alignment via joint knowledge embeddings[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2017: 4258-4264.
|
5 |
LIN Y K, LIU Z Y, LUAN H B, et al. Modeling relation paths for representation learning of knowledge bases[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2015: 705-714.
|
6 |
SUN Z Q, HU W, ZHANG Q H, et al. Bootstrapping entity alignment with knowledge graph embedding[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2018: 4396-4402.
|
7 |
SUN Z Q, HUANG J C, HU W, et al. TransEdge: translating relation-contextualized embeddings for knowledge graphs[C]//Proceedings of International Semantic Web Conference. Berlin, Germany: Springer, 2019: 612-629.
|
8 |
MAO X, WANG W T, WU Y B, et al. LightEA: a scalable, robust, and interpretable entity alignment framework via three-view label propagation[EB/OL]. [2023-04-12]. https://arxiv.org/abs/2210.10436v1.
|
9 |
|
10 |
CAO Y X, WANG X, HE X N, et al. Unifying knowledge graph learning and recommendation: towards a better understanding of user preferences[C]//Proceedings of the World Wide Web Conference. New York, USA: ACM Press, 2019: 151-161.
|
11 |
ZHU Q N, ZHOU X F, WU J, et al. Neighborhood-aware attentional representation for multilingual knowledge graphs[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2019: 1943-1949.
|
12 |
SUN Z Q, WANG C M, HU W, et al. Knowledge graph alignment network with gated multi-hop neighborhood aggregation[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2020: 222-229.
|
13 |
TAM N T, TRUNG H T, YIN H Z, et al. Entity alignment for knowledge graphs with multi-order convolutional networks. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(9): 4201- 4214.
doi: 10.1109/TKDE.2020.3038654
|
14 |
TANG X B, ZHANG J, CHEN B, et al. BERT-INT: a BERT-based interaction model for knowledge graph alignment[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2020: 3174-3180.
|
15 |
LIU Z Y, CAO Y X, PAN L M, et al. Exploring and evaluating attributes, values, and structures for entity alignment[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing(EMNLP). Stroudsburg, USA: Association for Computational Linguistics, 2020: 6355-6364.
|
16 |
WU Y T, LIU X, FENG Y S, et al. Relation-aware entity alignment for heterogeneous knowledge graphs[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2019: 5278-5284.
|
17 |
WU Y T, LIU X, FENG Y S, et al. Jointly learning entity and relation representations for entity alignment[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2019: 240-249.
|
18 |
MAO X, WANG W T, WU Y B, et al. From alignment to assignment: frustratingly simple unsupervised entity alignment[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2021: 2843-2853.
|
19 |
ZHU Y, LIU H Z, WU Z H, et al. Relation-aware neighborhood matching model for entity alignment[C]//Proceedings of the 25th International Conference on Database Systems for Advanced Applications. Berlin, Germany: Springer, 2021: 432-447.
|
20 |
ZHU R B, MA M, WANG P. RAGA: relation-aware graph attention networks for global entity alignment[C]//Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin, Germany: Springer, 2021: 501-513.
|
21 |
LIU F Y, CHEN M H, ROTH D, et al. Visual pivoting for(unsupervised) entity alignment[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2020: 4257-4266.
|
22 |
|
23 |
ROTH A E. Deferred acceptance algorithms: history, theory, practice, and open questions. International Journal of Game Theory, 2008, 36(3): 537- 569.
|
24 |
SUN Z Q, ZHANG Q H, HU W, et al. A benchmarking study of embedding-based entity alignment for knowledge graphs. Proceedings of the VLDB Endowment, 2020, 13(12): 2326- 2340.
doi: 10.14778/3407790.3407828
|