1 |
教育部办公厅. 教育部办公厅关于启动部分领域教学资源建设工作的通知. 中华人民共和国教育部公报, 2020, (4): 13- 15.
URL
|
|
The General Office of the Ministry of Education of the People's Republic of China . Notice from the General Office of the Ministry of Education on initiating the construction of teaching resources in certain fields. Gazette of the Ministry of Education of the People's Republic of China, 2020, (4): 13- 15.
URL
|
2 |
朱春俐. 职业教育专业教学资源库建设的意义价值及路径. 职教论坛, 2020, 36 (10): 58- 62.
URL
|
|
ZHU C L . The significance value and way of the building of teaching-resource bank for vocational education major. Journal of Vocational Education, 2020, 36 (10): 58- 62.
URL
|
3 |
蒋松. 教育数字化背景下思想政治理论课教学资源库建设初探. 思想理论教育, 2024, (1): 77- 82.
URL
|
|
JIANG S . Exploring the construction of teaching resource library for ideological and political theory courses under the background of digital education. Ideological & Theoretical Education, 2024, (1): 77- 82.
URL
|
4 |
|
|
|
5 |
吴正洋, 张广涛, 黄立, 等. 基于异质图嵌入和会话交互的课程推荐模型. 计算机工程, 2024, 50 (4): 95- 103.
URL
|
|
WU Z Y , ZHANG G T , HUANG L , et al. Course recommendation model based on heterogeneous graph embedding and session interaction. Computer Engineering, 2024, 50 (4): 95- 103.
URL
|
6 |
余鹏, 刘星雨, 程颢, 等. 在线课程推荐系统综述. 计算机工程与应用, 2023, 59 (22): 1- 14.
doi: 10.3778/j.issn.1002-8331.2305-0162
|
|
YU P , LIU X Y , CHENG H , et al. Survey of online course recommendation system. Computer Engineering and Applications, 2023, 59 (22): 1- 14.
doi: 10.3778/j.issn.1002-8331.2305-0162
|
7 |
ZHANG S , HUI N , ZHAI P Y , et al. A fine-grained and multi-context-aware learning path recommendation model over knowledge graphs for online learning communities. Information Processing & Management, 2023, 60 (5): 103464.
|
8 |
HEESEOK J, YEONJU J, SEONGHUN K, et al. KPCR: knowledge graph enhanced personalized course recommendation[C]//Proceedings of Advances in Artificial Intelligence. Berlin, Germany: Springer, 2022: 739-750.
|
9 |
SONG X H, LI Z T. Personalized recommendation system of blended English teaching resources based on deep learning[C]//Proceedings of the 14th International Conference on Measuring Technology and Mechatronics Automation. Washington D.C., USA: IEEE Press, 2022: 1219-1223.
|
10 |
岳佩, 张浩. 基于深度学习的英语教学资源个性化推荐系统. 信息技术, 2023, 47 (6): 149-153, 160.
URL
|
|
YUE P , ZHANG H . Personalized recommendation system of English teaching resources based on deep learning. Information Technology, 2023, 47 (6): 149-153, 160.
URL
|
11 |
SUN T Z, WEN J, GONG J L. Personalized learning resource recommendation using differential evolution-based graph neural network: a graph sage approach[C]//Proceedings of the 4th International Symposium on Computer Engineering and Intelligent Communications. Washington, D.C., USA: IEEE Press, 2023: 636-639.
|
12 |
ZHU Y F , LIN Q K , LU H , et al. Recommending learning objects through attentive heterogeneous graph convolution and operation-aware neural network. IEEE Transactions on Knowledge and Data Engineering, 2023, 35 (4): 4178- 4189.
|
13 |
徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述. 计算机学报, 2020, 43 (5): 755- 780.
URL
|
|
XU B B , CEN K T , HUANG J J , et al. A survey on graph convolutional neural network. Chinese Journal of Computers, 2020, 43 (5): 755- 780.
URL
|
14 |
|
|
|
15 |
柴文光, 张振杰. 基于图注意力卷积神经网络的推荐系统. 计算机应用与软件, 2023, 40 (8): 201-206, 273.
URL
|
|
CHAI W G , ZHANG Z J . Recommendation system based on graph attention convolutional neural network. Computer Applications and Software, 2023, 40 (8): 201-206, 273.
URL
|
16 |
LI Y Q , JIAN C F , ZANG G S , et al. Node classification oriented adaptive multichannel heterogeneous graph neural network. Knowledge-Based Systems, 2024, 292, 111618.
|
17 |
LIANG T T , MA L , ZHANG W Z , et al. Content-aware recommendation via dynamic heterogeneous graph convolutional network. Knowledge-Based Systems, 2022, 251, 109185.
|
18 |
CAI D S , QIAN S S , FANG Q , et al. Heterogeneous graph contrastive learning network for personalized micro-video recommendation. IEEE Transactions on Multimedia, 2022, 25, 2761- 2773.
|
19 |
XU A K , ZHONG P , KANG Y L , et al. THAN: multimodal transportation recommendation with heterogeneous graph attention networks. IEEE Transactions on Intelligent Transportation Systems, 2023, 24 (2): 1533- 1543.
|
20 |
SANG L , XU M , QIAN S S , et al. Adversarial heterogeneous graph neural network for robust recommendation. IEEE Transactions on Computational Social Systems, 2023, 10 (5): 2660- 2671.
|
21 |
ZHAO K K , ZHANG Z Y , JIANG B , et al. LGLNN: label guided graph learning-neural network for few-shot learning. Neural Networks, 2022, 155, 50- 57.
|
22 |
YANG Z K , LI W Y , ZHENG T F , et al. Domain-adaptive graph neural network for few-shot learning. Knowledge-Based Systems, 2023, 275, 110690.
|
23 |
CHEN C , LI K L , WEI W , et al. Hierarchical graph neural networks for few-shot learning. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32 (1): 240- 252.
|
24 |
CHENG H , ZHOU J T , TAY W P , et al. Graph neural networks with triple attention for few-shot learning. IEEE Transactions on Multimedia, 2023, 25, 8225- 8239.
|
25 |
ZHAO F , HUANG T C , WANG D L . Graph few-shot learning via restructuring task graph. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (1): 1415- 1422.
|
26 |
|
27 |
HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web. New York, USA: ACM Press, 2017: 173-182.
|
28 |
|
29 |
HIROKI M , KYOHEI A , SATOSHI O , et al. Neural collaborative filtering with multicriteria evaluation data. Applied Soft Computing, 2022, 119, 108548.
|
30 |
MAO K L, ZHU J M, XIAO X, et al. UltraGCN: ultra simplification of graph convolutional networks for recommendation[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York, USA: ACM Press, 2021: 1253-1262.
|