1 |
ZHANG N X , LI F , XU G L , et al. Chinese NER using dynamic meta-embeddings. IEEE Access, 2019, 7, 64450- 64459.
doi: 10.1109/ACCESS.2019.2916816
|
2 |
罗辉, 卢玲. 面向中文命名实体识别的中文字符表示方法. 小型微型计算机系统, 2023, 44 (7): 1434- 1440.
doi: 10.20009/j.cnki.21-1106/TP.2021-0862
|
|
LUO H , LU L . Character embedding method for Chinese named entity recognition. Journal of Chinese Computer System, 2023, 44 (7): 1434- 1440.
doi: 10.20009/j.cnki.21-1106/TP.2021-0862
|
3 |
ZHANG Y, YANG J. Chinese NER using Lattice LSTM[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, USA: Association for Computational Linguistics, 2018: 1554-1564.
|
4 |
LIU W, XU T G, XU Q H, et al. An encoding strategy based word-character[C]//Proceedings of the 2019 Conference of the North. Stroudsburg, USA: Association for Computational Linguistics, 2019: 2379-2389.
|
5 |
LUO Y, XIAO F S, ZHAO H. Hierarchical contextualized representation for named entity recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, AAAI Press, 2020: 8441-8448.
|
6 |
MILLER A, FISCH A, DODGE J, et al. Key-value memory networks for directly reading documents[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2016: 1400-1409.
|
7 |
LIU T Y, YAO J G, LIN C Y. Towards improving neural named entity recognition with gazetteers[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2019: 5301-5307.
|
8 |
|
9 |
SUI D B, CHEN Y B, LIU K, et al. Leverage lexical knowledge for Chinese named entity recognition via collaborative graph network[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, USA: Association for Computational Linguistics, 2019: 3821-3831.
|
10 |
TANG Z , WAN B Y , YANG L . Word-character graph convolution network for Chinese named entity recognition. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2020, 28, 1520- 1532.
doi: 10.1109/TASLP.2020.2994436
|
11 |
GUI T, YE J C, ZHANG Q, et al. Leveraging document-level label consistency for named entity recognition[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence. Yokohama, Japan: International Joint Conferences on Artificial Intelligence Organization, 2020: 3976-3982.
|
12 |
TIAN Y H , SHEN W , SONG Y , et al. Improving biomedical named entity recognition with syntactic information. BMC Bioinformatics, 2020, 21 (1): 539.
doi: 10.1186/s12859-020-03834-6
|
13 |
张云秋, 汪洋, 李博诚. 基于RoBERTa-wwm动态融合模型的中文电子病历命名实体识别. 数据分析与知识发现, 2022, 6 (2/3): 242- 250.
|
|
ZHANG Y Q , WANG Y , LI B C . Identifying named entities of chinese electronic medical records based on RoBERTa-wwm dynamic fusion mode. Data Analysis and Knowledge Discovery, 2022, 6 (2/3): 242- 250.
|
14 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[EB/OL]. [2023-09-11]. https://arxiv.org/abs/1810.04805.
|
15 |
杨飘, 董文永. 基于BERT嵌入的中文命名实体识别方法. 计算机工程, 2020, 46 (4): 40-45, 52.
doi: 10.19678/j.issn.1000-3428.0054272
|
|
YANG P , DONG W Y . Chinese named entity recognition method based on BERT embedding. Computer Engineering, 2020, 46 (4): 40-45, 52.
doi: 10.19678/j.issn.1000-3428.0054272
|
16 |
王笑月, 李茹, 段菲. 一种基于门控空洞卷积的高效中文命名实体识别方法. 中文信息学报, 2021, 35 (1): 72- 80.
doi: 10.3969/j.issn.1003-0077.2021.01.010
|
|
WANG X Y , LI R , DUAN F . An efficient Chinese named entity recognition method based on gated-dilated convolution. Journal of Chinese Information Processing, 2021, 35 (1): 72- 80.
doi: 10.3969/j.issn.1003-0077.2021.01.010
|
17 |
杨长沛, 廖列法. 基于门控空洞卷积特征融合的中文命名实体识别. 计算机工程, 2023, 49 (8): 85- 95.
doi: 10.19678/j.issn.1000-3428.0065455
|
|
YANG C P , LIAO L F . Chinese named entity recognition based on dilated gated convolution feature fusion. Computer Engineering, 2023, 49 (8): 85- 95.
doi: 10.19678/j.issn.1000-3428.0065455
|
18 |
LAFFERTY J, MCCALLUM A, PEREIRA F. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 18th International Conference on Machine Learning. Berlin, Germany: Springer, 2001: 282-289.
|
19 |
MA R T, PENG M L, ZHANG Q, et al. Simplify the usage of lexicon in Chinese NER[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2020: 5951-5960.
|
20 |
ZHU Y, WANG G, KARLSSON B F. CAN-NER: convolutional attention network for Chinese named entity recognition[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: Association for Computational Linguistics, 2019: 3384-3393.
|
21 |
CHANG N , ZHONG J , LI Q , et al. A mixed semantic features model for Chinese NER with characters and words. Advances in Information Retrieval, 2020, 12035, 356- 368.
|
22 |
|
23 |
|
24 |
GUI T, ZOU Y C, ZHANG Q, et al. A lexicon-based graph neural network for Chinese NER[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, USA: Association for Computational Linguistics, 2019: 1039-1049.
|
25 |
|
26 |
LI X N, YAN H, QIU X P, et al. FLAT: Chinese NER using flat-lattice Transformer[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2020: 6836-6842.
|
27 |
李军怀, 陈苗苗, 王怀军, 等. 基于ALBERT-BGRU-CRF的中文命名实体识别方法. 计算机工程, 2022, 48 (6): 89-94, 106.
doi: 10.19678/j.issn.1000-3428.0061630
|
|
LI J H , CHEN M M , WANG H J , et al. Chinese named entity recognition method based on ALBERT-BGRU-CRF. Computer Engineering, 2022, 48 (6): 89-94, 106.
doi: 10.19678/j.issn.1000-3428.0061630
|