[1] 刘玉婷, 刘茗, 王保卫, 等. 脚本事件预测:方法、评测与挑战[J]. 计算机应用研究, 2023, 40(5):1303-1311. LIU Y T, LIU M, WANG B W, et al. Script event prediction:methods, evaluation and challenges[J]. Application Research of Computers, 2023, 40(5):1303-1311. (in Chinese) [2] CHAMBERS N, JURAFSKY D. Unsupervised learning of narrative event chains[C]//Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics. Washington D. C.,USA:IEEE Press,2008:789-797. [3] JANS B, BETHARD S, VULĺC I, et al. Skip n-grams and ranking functions for predicting script events[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Washington D. C., USA:IEEE Press, 2012:336-344. [4] PICHOTTA K, MOONEY R. Statistical script learning with multi-argument events[C]//Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics. Berlin, Germany:Springer, 2014:220-229. [5] PICHOTTA K, MOONEY R J. Learning statistical scripts with LSTM recurrent neural networks[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. New York, USA:ACM Press, 2016:2800-2806. [6] GLAVAŠ G, ŠNAJDER J. Construction and evaluation of event graphs[J]. Natural Language Engineering, 2015, 21(4):607-652. [7] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2013:3111-3119. [8] GRANROTH-WILDING M, CLARK S. What happens next? Event prediction using a compositional neural network model[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. New York, USA:ACM Press, 2016:2727-2733. [9] WANG Z Q, ZHANG Y, CHANG C Y. Integrating order information and event relation for script event prediction[C]//Proceedings of 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA:Association for Computational Linguistics, 2017:57-67. [10] LÜ S W, QIAN W H, HUANG L T, et al. SAM-Net:integrating event-level and chain-level attentions to predict what happens next[C]//Proceedings of AAAI Conference on Artificial Intelligence.[S. 1.]:AAAI Press, 2019:6802-6809. [11] LI Z Y, ZHAO S D, DING X, et al. EEG:knowledge base for event evolutionary principles and patterns[M]. Berlin, Germany:Springer, 2017. [12] 黄承宁, 李娟, 陈嘉政. 基于图神经网络的医疗物资智能调度研究优化[J]. 计算机技术与发展, 2021, 31(9):202-207. HUANG C N, LI J, CHEN J Z. Research and optimization of medical material intelligent scheduling based on graph neural network[J]. Computer Technology and Development, 2021, 31(9):202-207.(in Chinese) [13] 王健宗, 孔令炜, 黄章成, 等. 图神经网络综述[J]. 计算机工程, 2021, 47(4):1-12. WANG J Z, KONG L W, HUANG Z C, et al. Survey of graph neural network[J]. Computer Engineering, 2021, 47(4):1-12.(in Chinese) [14] ZHAO L. Event prediction in the big data era:a systematic survey[J]. ACM Computing Surveys, 2021,54(5):94. [15] ZHAO S D. Mining medical causality for diagnosis assistance[C]//Proceedings of the 10th ACM International Conference on Web Search and Data Mining. New York, USA:ACM Press, 2017:841. [16] 孙盼, 王琪, 万怀宇. 结合事件链与事理图谱的脚本事件预测模型[J]. 计算机工程, 2022, 48(4):119-125. SUN P, WANG Q, WAN H Y. Script event prediction model combining event chains and event evolutionary graphs[J]. Computer Engineering, 2022, 48(4):119-125.(in Chinese) [17] SCHAPIRE R E, SINGER Y. BoosTexter:a boosting-based system for text categorization[J]. Machine Learning, 2000, 39(2):135-168. [18] 李志欣, 卓亚琦, 张灿龙, 等. 多标记学习研究综述[J]. 计算机应用研究, 2014, 31(6):1601-1605. LI Z X, ZHUO Y Q, ZHANG C L, et al. Survey on multi-label learning[J]. Application Research of Computers, 2014, 31(6):1601-1605.(in Chinese) [19] ZHANG M L, ZHOU Z H. A review on multi-label learning algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8):1819-1837. [20] 王晓莹, 谢钧, 陶性留, 等. 基于嵌入式特征提取的多标记分类算法[J]. 计算机工程, 2019, 45(11):172-176. WANG X Y, XIE J, TAO X L, et al. Multi-label classification algorithm based on embedded feature extraction[J]. Computer Engineering, 2019, 45(11):172-176.(in Chinese) [21] ZHANG M L, ZHOU Z H. ML-KNN:a lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7):2038-2048. [22] ELISSEEFF A, WESTON J. A kernel method for multi-labelled classification[C]//Proceedings of NIPS'02. Cambridge, USA:MIT Press, 2002:681-688. [23] BOUTELL M R, LUO J B, SHEN X P, et al. Learning multi-label scene classification[J]. Pattern Recognition, 2004, 37(9):1757-1771. [24] READ J, PFAHRINGER B, HOLMES G. Multi-label classification using ensembles of pruned sets[C]//Proceedings of the 8th International Conference on Data Mining. New York, USA:ACM Press, 2008:995-1000. [25] 高振华. 基于标记间相关性的多标记分类算法[D]. 长沙:中南大学, 2013. GAO Z H. Multi-label classification algorithm based on labels'correlation[D].Changsha:Central South University, 2013. (in Chinese) [26] LI H, YAN G Y, ZHAO X, et al. Tactical mission event logic graph construction for network-centric warfare[J]. Alexandria Engineering Journal, 2022, 61(11):9161-9173. [27] XIE R B, LIU Z Y, SUN M S. Representation learning of knowledge graphs with hierarchical types[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence. New York, USA:ACM Press, 2016:2965-2971. [28] DEVLIN J, CHANG M W, LEE K, et al. BERT:pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of Conference of the North American Chapter of the ACL:Human Language Technologies. Washington D. C.,USA:IEEE Press,2019:4171-4186. [29] LIN Y K, LIU Z Y, LUAN H B, et al. Modeling relation paths for representation learning of knowledge bases[C]//Proceedings of 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA:Association for Computational Linguistics, 2015:705-714. [30] LI Z Y, DING X, LIU T. Constructing narrative event evolutionary graph for script event prediction[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. New York, USA:ACM Press, 2018:4201-4207. [31] 杨顶, 邓明君, 徐丽萍. 基于时空信息融合学习的路段行程车速短时预测[J]. 计算机工程, 2021, 47(12):78-86. YANG D, DENG M J, XU L P. Short-term prediction of road travel speed based on spatio-temporal information fusion learning[J]. Computer Engineering, 2021, 47(12):78-86.(in Chinese) [32] SHEN Z R, ZHANG M Y, ZHAO H Y, et al. Efficient attention:attention with linear complexities[C]//Proceedings of IEEE Winter Conference on Applications of Computer Vision. Waikoloa, USA:IEEE Press, 2021:3531-3539. [33] LIU X L, JIN J H, WANG Q, et al. PatientEG dataset:bringing event graph model with temporal relations to electronic medical records[EB/OL].[2023-03-10]. http://arxiv.org/pdf/1812.09905. |