| 1 |
MIHALCEA R, CSOMAI A. Wikify! linking documents to encyclopedic knowledge[C]//Proceedings of the 16th ACM Conference on Information and Knowledge Management, New York, USA: ACM Press, 2007: 233-242.
|
| 2 |
GANGEMI A , ALAM M , ASPRINO L , et al. Framester: a wide coverage linguistic linked data hub. Berlin, Germany: Springer, 2016.
|
| 3 |
PERSHINA M, HE Y F, GRISHMAN R. Personalized page rank for named entity disambiguation[C]//Proceedings of 2015 Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2015: 238-243.
|
| 4 |
SPITKOVSKY V I, CHANG A X. A cross-lingual dictionary for English wikipedia concepts[C]//Proceedings of the 8th International Conference on Language Resources and Evaluation. Washington D. C., USA: IEEE Press, 2012: 3168-3175.
|
| 5 |
KARADENIZİ , ÖZGVR A . Linking entities through an ontology using word embeddings and syntactic re-ranking. BMC Bioinformatics, 2019, 20 (1): 156.
doi: 10.1186/s12859-019-2678-8
|
| 6 |
|
| 7 |
BUNESCU R C. Learning for information extraction: from named entity recognition and disambiguation to relation extraction[D]. Austin, USA: The University of Texas at Austin, 2007.
|
| 8 |
ZHANG Y N , JIN L , ZHANG Z Q , et al. SF-ANN: leveraging structural features with an attention neural network for candidate fact ranking. Applied Intelligence, 2022, 52 (5): 5841- 5856.
doi: 10.1007/s10489-021-02739-y
|
| 9 |
MA N Y , LIU X , GAO Y L . Entity linking based on graph model and semantic representation. Berlin, Germany: Springer, 2019.
|
| 10 |
TANG X L , YANG J M , XIONG D Y , et al. Knowledge-enhanced graph convolutional network for recommendation. Multimedia Tools and Applications, 2022, 81 (20): 28899- 28916.
doi: 10.1007/s11042-022-12272-w
|
| 11 |
ZWICKLBAUER S, SEIFERT C, GRANITZER M. Robust and collective entity disambiguation through semantic embeddings[C]//Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2016: 425-434.
|
| 12 |
|
| 13 |
HOFFART J, YOSEF M A, BORDINO I, et al. Robust disambiguation of named entities in text[C]//Proceedings of 2011 Conference on Empirical Methods in Natural Language Processing. Washington D. C., USA: IEEE Press, 2011: 782-792.
|
| 14 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2023-06-20]. https://arxiv.org/abs/1810.04805.
|
| 15 |
LAI T, JI H, ZHAI C X. BERT might be Overkill: a tiny but effective biomedical entity linker based on residual convolutional neural networks[EB/OL]. [2023-06-20]. https://arxiv.org/abs/2109.02237.
|
| 16 |
SUN K, ZHANG R C, MENSAH S, et al. A transformational biencoder with in-domain negative sampling for zero-shot entity linking[C]//Proceedings of the Findings of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2022: 1449-1458.
|
| 17 |
VRETINARIS A, LEI C, EFTHYMIOU V, et al. Medical entity disambiguation using graph neural networks[C]//Proceedings of 2021 International Conference on Management of Data. New York, USA: ACM Press, 2021: 2310-2318.
|
| 18 |
FANG Z, CAO Y N, LI R, et al. High quality candidate generation and sequential graph attention network for entity linking[C]//Proceedings of Web Conference. New York, USA: ACM Press, 2020: 640-650.
|
| 19 |
|
| 20 |
D'SOUZA J, NG V. Sieve-based entity linking for the biomedical domain[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2015: 297-302.
|
| 21 |
SOHN S , COMEAU D C , KIM W , et al. Abbreviation definition identification based on automatic precision estimates. BMC Bioinformatics, 2008, 9, 402.
doi: 10.1186/1471-2105-9-402
|
| 22 |
LEAMAN R , ISLAMAJ DOǦAN R , LU Z Y . DNorm: disease name normalization with pairwise learning to rank. Bioinformatics, 2013, 29 (22): 2909- 2917.
doi: 10.1093/bioinformatics/btt474
|
| 23 |
LEAMAN R , LU Z Y . TaggerOne: joint named entity recognition and normalization with semi-Markov Models. Bioinformatics, 2016, 32 (18): 2839- 2846.
doi: 10.1093/bioinformatics/btw343
|
| 24 |
LI H D , CHEN Q C , TANG B Z , et al. CNN-based ranking for biomedical entity normalization. BMC Bioinformatics, 2017, 18 (11): 385.
URL
|
| 25 |
WRIGHT D. NormCo: deep disease normalization for biomedical knowledge base construction[D]. San Diego, USA: University of California, 2019.
|
| 26 |
PHAN M C, SUN A X, TAY Y. Robust representation learning of biomedical names[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2019: 3275-3285.
|
| 27 |
|
| 28 |
CHEN L H , VAROQUAUX G , SUCHANEK F M . A lightweight neural model for biomedical entity linking. Artificial Intelligence, 2021, 35 (14): 12657- 12665.
URL
|