1 |
ZHANG X F , ZHANG R C , CHEN J F , et al. Semi-supervised entity alignment with global alignment and local information aggregation. IEEE Transactions on Knowledge and Data Engineering, 2023, 35 (10): 10464- 10477.
doi: 10.1109/TKDE.2023.3238993
|
2 |
ZHU B B , BAO T , WANG K R , et al. A semi-supervised neighborhood matching model for global entity alignment. Neural Computing and Applications, 2023, 35 (15): 10779- 10799.
doi: 10.1007/s00521-023-08264-y
|
3 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[EB/OL]. [2023-10-11]. https://arxiv.org/pdf/1810.04805.
|
4 |
黄峻福, 李天瑞, 贾真, 等. 中文异构百科知识库实体对齐. 计算机应用, 2016, 36 (7): 1881-1886, 1898.
doi: 10.11772/j.issn.1001-9081.2016.07.1881
|
|
HUANG J F , LI T R , JIA Z , et al. Enity alignment of Chinese heterogeneous encyclopedia knowledge base. Journal of Computer Applications, 2016, 36 (7): 1881-1886, 1898.
doi: 10.11772/j.issn.1001-9081.2016.07.1881
|
5 |
朱蓓蓓. 面向知识图谱的实体对齐研究[D]. 长春: 吉林大学, 2023.
|
|
ZHU B B. Research on entity alignment for knowledge graphs[D]. Changchun: Jilin University, 2023. (in Chinese)
|
6 |
CHEN M H, TIAN Y T, YANG M H, et al. Multi-aspect information knowledge graph embeddings for cross-lingual knowledge alignment[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing. Melbourne, Australia: AAAI Press, 2017: 1511-1517.
|
7 |
ZHU H, XIE R B, LIU Z Y. Iterative entity alignment via joint knowledge embeddings[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. New York, USA: ACM Press, 2017: 4258-4264.
|
8 |
|
9 |
刘雪丽, 李燕, 李春雨, 等. 基于多方嵌入的逐步实体对齐方法. 现代电子技术, 2024, 47 (13): 138- 143.
doi: 10.16652/j.issn.1004-373x.2024.13.025
|
|
LIU X L , LI Y , LI C Y , et al. Stepwise entity alignment based on multi-party embedding. Modern Electronics Technique, 2024, 47 (13): 138- 143.
doi: 10.16652/j.issn.1004-373x.2024.13.025
|
10 |
WANG Z C, LV Q S, LAN X H, et al. Cross-lingual knowledge graph alignment via graph convolutional networks[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing. Brussels, Belgium: Association for Computational Linguistics, 2018: 349-357.
|
11 |
|
12 |
WU Y T, LIU X, FENG Y S, et al. Neighborhood matching network for entity alignment[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Brussels, Belgium: Association for Computational Linguistics, 2020: 6477-6487.
|
13 |
CHEN M H, TIAN Y T, CHANG, K W, et al. Co-training embeddings of knowledge graphs and entity descriptions for cross-lingual entity alignment[EB/OL]. [2023-10-11]. https://arxiv.org/pdf/1806.06478.
|
14 |
|
15 |
|
16 |
LAI K H, ZHA D, LI Y N, et al. BERT-INT: a BERT-based interaction model for knowledge graph alignment[C]//Proceedings of International Joint Conference on Artificial Intelligence. Montreal, Canada: AAAI Press, 2021: 3174-3180.
|
17 |
李文娜, 张智雄. 基于联合语义表示的不同知识库中的实体对齐方法研究. 数据分析与知识发现, 2021, 5 (7): 1- 9.
doi: 10.11925/infotech.2096-3467.2021.0143
|
|
LI W N , ZHANG Z X . Entity alignment method for different knowledge repositories with joint semantic representation. Data Analysis and Knowledge Discovery, 2021, 5 (7): 1- 9.
doi: 10.11925/infotech.2096-3467.2021.0143
|
18 |
ETHAYARAJH K. How contextual are contextualized word representations? comparing the geometry of BERT, ELMo, and GPT-2 embeddings[EB/OL]. [2023-10-11]. https://arxiv.org/abs/1909.00512v1.
|
19 |
|
20 |
|
21 |
WANG T Z, ISOLA P. Understanding contrastive representation learning through alignment and uniformity on the hypersphere[C]//Proceedings of International Conference on Machine Learning. [S. l. ]: AAAI Press, 2021: 9309-10077.
|
22 |
LI B H, ZHOU H, HE J X, et al. On the sentence embeddings from pre-trained language models[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. New York, USA: Association for Computational Linguistics, 2020: 9119-9130.
|
23 |
|
24 |
|
25 |
GUO M H , LIU Z N , MU T J , et al. Beyond self-attention: external attention using two linear layers for visual tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45 (5): 5436- 5447.
|
26 |
HE K M, FAN H Q, WU Y X, et al. Momentum contrast for unsupervised visual representation learning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Washington D.C., USA: IEEE Press, 2019: 9726-9735.
|
27 |
XIONG C Y, DAI Z Y, CALLAN J, et al. End-to-end neural ad-hoc ranking with kernel pooling[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2017: 55-64.
|
28 |
SUN Z Q, HU W, ZHANG Q H, et al. Bootstrapping entity alignment with knowledge graph embedding[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. New York, USA: ACM Press, 2018: 4396-4402.
|