| 1 |  PATWAL A ,  DIWAKAR M ,  TRIPATHI V , et al.  Crowd counting analysis using deep learning: a critical review. Procedia Computer Science, 2023, 218, 2448- 2458.  doi: 10.1016/j.procs.2023.01.220
 | 
																													
																						| 2 | LEIBE B, SEEMANN E, SCHIELE B. Pedestrian detection in crowded scenes[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE Press, 2005: 322-335. | 
																													
																						| 3 | LI M, ZHANG Z X, HUANG K Q, et al. Estimating the number of people in crowded scenes by MID based foreground segmentation and head-shoulder detection[C]//Proceedings of the 19th International Conference on Pattern Recognition. Washington D. C., USA: IEEE Press, 2008: 1-4. | 
																													
																						| 4 | IDREES H, SALEEMI I, SHAH M. Multi-source, multi-scale counting in dense crowd images: US9946952[P]. 2018-04-17. | 
																													
																						| 5 | CHAN A B, VASCONCELOS N. Bayesian Poisson regression for crowd counting[C]//Proceedings of the 12th IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2009: 545-551. | 
																													
																						| 6 | RYAN D, DENMAN S, FOOKES C, et al. Crowd counting using multiple local features[C]//Proceedings of Digital Image Computing: Techniques and Applications. Melbourne, Australia: IEEE Press, 2009: 81-88. | 
																													
																						| 7 | 卢振坤, 刘胜, 钟乐, 等.  人群计数研究综述. 计算机工程与应用, 2022, 58 (11): 33- 46.  doi: 10.3778/j.issn.1002-8331.2111-0281
 | 
																													
																						|  |  LI Z K ,  LIU S ,  ZHONG Y , et al.  Survey on research of crowd counting. Computer Engineering and Applications, 2022, 58 (11): 33- 46.  doi: 10.3778/j.issn.1002-8331.2111-0281
 | 
																													
																						| 8 |  DAVIES A C ,  VELASTIN S A ,  YIN J H .  Crowd monitoring using image processing. Electronics & Communication Engineering Journal, 1995, 7 (1): 37- 47.  doi: 10.3969/j.issn.2096-2657.1995.01.008
 | 
																													
																						| 9 |  FAN Z Z ,  ZHANG H ,  ZHANG Z , et al.  A survey of crowd counting and density estimation based on convolutional neural network. Neurocomputing, 2022, 472, 224- 251.  doi: 10.1016/j.neucom.2021.02.103
 | 
																													
																						| 10 |  KHAN M A ,  MENOUAR H ,  HAMILA R .  Revisiting crowd counting: state-of-the-art, trends, and future perspectives. Image and Vision Computing, 2023, 129, 104597.  doi: 10.1016/j.imavis.2022.104597
 | 
																													
																						| 11 | ZHANG Y Y, ZHOU D S, CHEN S Q, et al. Single-image crowd counting via multi-column convolutional neural network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE Press, 2016: 589-597. | 
																													
																						| 12 | THANASUTIVES P, FUKUI K I, NUMAO M, et al. Encoder-decoder based convolutional neural networks with multi-scale-aware modules for crowd counting[C]//Proceedings of the 25th International Conference on Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 2382-2389. | 
																													
																						| 13 | LIU Z, MAO H Z, WU C Y, et al. A ConvNet for the 2020s[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE Press, 2022: 11976-11986. | 
																													
																						| 14 |  HUANG S ,  LI X ,  ZHANG Z , et al.  Body structure aware deep crowd counting. IEEE Transactions on Image Processing, 2018, 27 (3): 1049- 1059.  doi: 10.1109/TIP.2017.2740160
 | 
																													
																						| 15 | DEB D, VENTURA J. An aggregated multicolumn dilated convolution network for perspective-free counting[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE Press, 2018: 195-204. | 
																													
																						| 16 | SHEN Z, XU Y, NI B B, et al. Crowd counting via adversarial cross-scale consistency pursuit[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE Press, 2018: 5245-5254. | 
																													
																						| 17 | ZHANG L, SHI M J, CHEN Q B. Crowd counting via scale-adaptive convolutional neural network[C]//Proceedings of IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe, USA: IEEE Press, 2018: 1113-1121. | 
																													
																						| 18 |  CAO X K ,  WANG Z P ,  ZHAO Y Y , et al.  Scale aggregation network for accurate and efficient crowd counting. Berlin, Germany: Springer, 2018. | 
																													
																						| 19 | XU C F, QIU K, FU J L, et al. Learn to scale: generating multipolar normalized density maps for crowd counting[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 8382-8390. | 
																													
																						| 20 | LI Y H, ZHANG X F, CHEN D M. CSRNet: dilated convolutional neural networks for understanding the highly congested scenes[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE Press, 2018: 1091-1100. | 
																													
																						| 21 |  | 
																													
																						| 22 | MA Y M, SANCHEZ V, GUHA T. Fusioncount: efficient crowd counting via multiscale feature fusion[C]//Proceedings of IEEE International Conference on Image Processing. Washington D. C., USA: IEEE Press, 2022: 468-476. | 
																													
																						| 23 |  XU C F ,  LIANG D K ,  XU Y C , et al.  AutoScale: learning to scale for crowd counting. International Journal of Computer Vision, 2022, 130 (2): 405- 434.  doi: 10.1007/s11263-021-01542-z
 | 
																													
																						| 24 | 祥滨, 吕浩杰.  多尺度注意力机制的双路人群计数网络. 沈阳航空航天大学学报, 2023, 40 (3): 16- 27.  doi: 10.3969/j.issn.2095-1248.2023.03.003
 | 
																													
																						|  |  XIANG B ,  LÜ H J .  Two-way crowd counting network with amulti-scale attention mechanism. Journal of Shenyang Aerospace University, 2023, 40 (3): 16- 27.  doi: 10.3969/j.issn.2095-1248.2023.03.003
 | 
																													
																						| 25 | SAM D B, SURYA S, BABU R V. Switching convolutional neural network for crowd counting[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE Press, 2017: 5744-5752. | 
																													
																						| 26 | SINDAGI V A, PATEL V M. Generating high-quality crowd density maps using contextual pyramid CNNs[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 1861-1870. | 
																													
																						| 27 | 曾芸芸, 张红英, 袁明东.  多尺度融合的双分支特征提取人群计数算法. 计算机工程与应用, 2024, 60 (20): 224- 232.  doi: 10.3778/j.issn.1002-8331.2305-0427
 | 
																													
																						|  |  ZENG Y Y ,  ZHANG H Y ,  YUAN M D .  Crowd counting algorithm for multi-scale fusion based on dual branch feature extraction. Computer Engineering and Applications, 2024, 60 (20): 224- 232.  doi: 10.3778/j.issn.1002-8331.2305-0427
 | 
																													
																						| 28 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2017: 30-43. | 
																													
																						| 29 |  SAVNER S S ,  KANHANGAD V .  CrowdFormer: weakly-supervised crowd counting with improved generalizability. Journal of Visual Communication and Image Representation, 2023, 94, 103853.  doi: 10.1016/j.jvcir.2023.103853
 | 
																													
																						| 30 |  WANG W H ,  XIE E Z ,  LI X , et al.  PVT v2: improved baselines with pyramid vision transformer. Computational Visual Media, 2022, 8 (3): 415- 424.  doi: 10.1007/s41095-022-0274-8
 | 
																													
																						| 31 | WANG W H, XIE E Z, LI X, et al. Pyramid vision transformer: a versatile backbone for dense prediction without convolutions[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 568-578. | 
																													
																						| 32 |  LI B ,  ZHANG Y ,  XU H H , et al.  CCST: crowd counting with swin transformer. The Visual Computer, 2023, 39 (7): 2671- 2682.  doi: 10.1007/s00371-022-02485-3
 | 
																													
																						| 33 | LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 10012-10022. | 
																													
																						| 34 | WANG F S, LIU K, LONG F, et al. Joint CNN and transformer network via weakly supervised learning for efficient crowd counting[EB/OL]. [2023-11-20]. https://arxiv.org/abs/2203.06388 . | 
																													
																						| 35 | DAI M L, HUANG Z Z, GAO J Q, et al. Cross-head supervision for crowd counting with noisy annotations[C]//Proceedings of 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2023: 1-5. | 
																													
																						| 36 |  | 
																													
																						| 37 | LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 2117-2125. | 
																													
																						| 38 |  RONNEBERGER O ,  FISCHER P ,  BROX T .  U-Net: convolutional networks for biomedical image segmentation. Berlin, Germany: Springer, 2015: 234- 241. | 
																													
																						| 39 | DAI F, LIU H, MA Y K, et al. Dense scale network for crowd counting[C]//Proceedings of 2021 International Conference on Multimedia Retrieval. New York, USA: ACM Press, 2021: 64-72. | 
																													
																						| 40 | MA Z H, WEI X, HONG X P, et al. Bayesian loss for crowd count estimation with point supervision[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 6142-6151. | 
																													
																						| 41 | 袁健, 王姗姗, 罗英伟.  基于图像视野划分的公共场所人群计数模型. 计算机应用研究, 2021, 38 (4): 1256-1260, 1280. | 
																													
																						|  |  YUAN J ,  WANG S S ,  LUO Y W .  Public place crowd counting model based on image field division. Application Research of Computers, 2021, 38 (4): 1256-1260, 1280. | 
																													
																						| 42 |  | 
																													
																						| 43 | TRAN N H, HUY T D, DUONG S T, et al. Improving local features with relevant spatial information by vision transformer for crowd counting[C]//Proceedings of IEEE/CVF International Conference on Machine Vision. Washington D. C., USA: IEEE Press, 2022: 353-562. | 
																													
																						| 44 | 沈宁静, 袁健.  基于残差密集连接与注意力融合的人群计数算法. 电子科技, 2022, 35 (6): 6- 12. | 
																													
																						|  |  SHEN N J ,  YUAN J .  Crowd counting algorithm based on residual dense connection and attention fusion. Electronic Science and Technology, 2022, 35 (6): 6- 12. |