1 |
HAUSLER S, GARG S, XU M, et al. Patch-NetVLAD: multi-scale fusion of locally-global descriptors for place recognition[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 14136-14147.
|
2 |
MA X J , NIU Y H , GU L , et al. Understanding adversarial attacks on deep learning based medical image analysis systems. Pattern Recognition, 2021, 110, 107332.
doi: 10.1016/j.patcog.2020.107332
|
3 |
|
4 |
AKHTAR N , MIAN A . Threat of adversarial attacks on deep learning in computer vision: a survey. IEEE Access, 2018, 6, 14410- 14430.
doi: 10.1109/ACCESS.2018.2807385
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
MOOSAVI-DEZFOOLI S M, FAWZI A, FROSSARD P. DeepFool: a simple and accurate method to fool deep neural networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2016: 2574-2582.
|
10 |
CARLINI N, WAGNER D. Towards evaluating the robustness of neural networks[C]//Proceedings of the IEEE Symposium on Security and Privacy. Washington D.C., USA: IEEE Press, 2017: 39-57.
|
11 |
GOODFELLOW I , POUGET-ABADIE J , MIRZA M , et al. Generative adversarial networks. Communications of the ACM, 2020, 63 (11): 139- 144.
doi: 10.1145/3422622
|
12 |
|
13 |
|
14 |
李建, 郭延明, 于天元, 等. 基于生成对抗网络的多目标类别对抗样本生成算法. 计算机科学, 2022, 49 (2): 83- 91.
|
|
LI J , GUO Y M , YU T Y , et al. Multi-target category adversarial example generating algorithm based on GAN. Computer Science, 2022, 49 (2): 83- 91.
|
15 |
HU J , SHEN L , ALBANIE S , et al. Squeeze-and-excitation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (8): 2011- 2023.
doi: 10.1109/TPAMI.2019.2913372
|
16 |
潘文雯, 王新宇, 宋明黎, 等. 对抗样本生成技术综述. 软件学报, 2019, 31 (1): 67- 81.
|
|
PAN W W , WANG X Y , SONG M L , et al. Survey on generating adversarial examples. Journal of Software, 2019, 31 (1): 67- 81.
|
17 |
王晓鹏, 罗威, 秦克, 等. 一种针对快速梯度下降对抗攻击的防御方法. 计算机工程, 2021, 47 (11): 121- 128.
URL
|
|
WANG X P , LUO W , QIN K , et al. A defense method against FGSM adversarial attack. Computer Engineering, 2021, 47 (11): 121- 128.
URL
|
18 |
|
19 |
王伟, 董晶, 何子文, 等. 视觉对抗样本生成技术概述. 信息安全学报, 2020, 5 (2): 39- 48.
|
|
WANG W , DONG J , HE Z W , et al. A brief introduction to visual adversarial samples. Journal of Cyber Security, 2020, 5 (2): 39- 48.
|
20 |
NOWROOZI E , MEKDAD Y , BERENJESTANAKI M H , et al. Demystifying the transferability of adversarial attacks in computer networks. IEEE Transactions on Network and Service Management, 2022, 19 (3): 3387- 3400.
doi: 10.1109/TNSM.2022.3164354
|
21 |
罗鑫, 夏学知. 面向图像识别的对抗样本与攻击研究. 舰船电子工程, 2023, 43 (2): 22-29, 33.
|
|
LUO X , XIA X Z . Research on adversarial samples and attacks for image recognition. Ship Electronic Engineering, 2023, 43 (2): 22-29, 33.
|
22 |
|
23 |
|
24 |
ZHANG W J . Generating adversarial examples in one shot with image-to-image translation GAN. IEEE Access, 2019, 7, 151103- 151119.
doi: 10.1109/ACCESS.2019.2946461
|
25 |
|
26 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2016: 770-778.
|