[1] 杨笑笑,柯琳,陈智斌.深度强化学习求解车辆路径问题的研究综述[J].计算机工程与应用, 2023, 59(5):1-13. YANG X X, KE L, CHEN Z B. Review of deep reinforcement learning model research on vehicle routing problems[J]. Computer Engineering and Applications, 2023, 59(5):1-13.(in Chinese) [2] ZUO Z Y, HAN Q L, NING B D, et al. An overview of recent advances in fixed-time cooperative control of multiagent systems[J]. IEEE Transactions on Industrial Informatics, 2018, 14(6):2322-2334. [3] LOPEZ A, JIN W L, AL FARUQUE M A. Security analysis for fixed-time traffic control systems[J]. Transportation Research, Part B:Methodological, 2020, 139:473-495. [4] ZHAO D B, DAI Y J, ZHANG Z. Computational intelligence in urban traffic signal control:a survey[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews, 2012, 42(4):485-494. [5] 屈新明,姚红云,王玉刚,等.基于有效绿灯时间利用率的自适应控制策略研究[J].交通运输研究, 2015, 1(1):54-58. QU X M, YAO H Y, WANG Y G, et al. Adaptive control strategy based on effective utilization ratio of green light time[J]. Transport Research, 2015, 1(1):54-58.(in Chinese) [6] LI S R, WEI C, YAN X D, et al. A deep adaptive traffic signal controller with long-term planning horizon and spatial-temporal state definition under dynamic traffic fluctuations[J]. IEEE Access, 2020, 8:37087-37104. [7] 叶宝林.城市路网交通信号协调控制理论与方法研究[D].杭州:浙江大学, 2015. YE B L. Study on the theory and method of traffic signal coordinated control in urban road network[D]. Hangzhou:Zhejiang University, 2015.(in Chinese) [8] BELLOMO N, DOGBE C. On the modeling of traffic and crowds:a survey of models, speculations, and perspectives[J]. SIAM Review, 2011, 53(3):409-463. [9] ZHENG Y, JIN L S, JIANG Y Y, et al. Research on cooperative vehicle intersection control scheme without using traffic lights under the connected vehicles environment[J]. Advances in Mechanical Engineering, 2017, 9(8):115789974. [10] HAYES C F, R ǍG DULESCU R, BARGIACCHI E, et al. A practical guide to multi-objective reinforcement learning and planning[J]. Autonomous Agents and Multi-Agent Systems, 2022, 36(1):26. [11] YE B L, ZHU S W, LI L X, et al. Short-term traffic flow prediction at isolated intersections based on parallel multi-task learning[J]. Systems Science& Control Engineering, 2024, 12(1):2316160. [12] WAN C H, HWANG M C. Value-based deep reinforcement learning for adaptive isolated intersection signal control[J]. IET Intelligent Transport Systems, 2018, 12(9):1005-1010. [13] 马东方,陈曦,吴晓东,等.基于强化学习的干线信号混合协同优化方法[J].交通运输系统工程与信息, 2022, 22(2):145-153. MA D F, CHEN X, WU X D, et al. Mixed-coordinated decision-making method for arterial signals based on reinforcement learning[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(2):145-153.(in Chinese) [14] YE B L, WU W M, RUAN K Y, et al. A survey of model predictive control methods for traffic signal control[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(3):623-640. [15] YE B L, WU W M, LI L X, et al. A hierarchical model predictive control approach for signal splits optimization in large-scale urban road networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(8):2182-2192. [16] MA W J, WAN L J, YU C H, et al. Multi-objective optimization of traffic signals based on vehicle trajectory data at isolated intersections[J]. Transportation Research, Part C:Emerging Technologies, 2020, 120:102821. [17] 孔凌辉,饶哲恒,徐彦彦,等.基于深度强化学习的无线网络智能路由算法[J].计算机工程, 2023, 49(9):199-207, 216. KONG L H, RAO Z H, XU Y Y, et al. Intelligent routing algorithm for wireless networks based on deep reinforcement learning[J]. Computer Engineering, 2023, 49(9):199-207, 216.(in Chinese) [18] 刘朝阳,穆朝絮,孙长银.深度强化学习算法与应用研究现状综述[J].智能科学与技术学报, 2020, 2(4):314-326. LIU Z Y, MU C X, SUN C Y. An overview on algorithms and applications of deep reinforcement learning[J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(4):314-326.(in Chinese) [19] 刘智敏,叶宝林,朱耀东,等.基于深度强化学习的交通信号控制方法[J].浙江大学学报(工学版), 2022, 56(6):1249-1256. LIU Z M, YE B L, ZHU Y D, et al. Traffic signal control method based on deep reinforcement learning[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(6):1249-1256.(in Chinese) [20] MA D F, ZHOU B, SONG X, et al. A deep reinforcement learning approach to traffic signal control with temporal traffic pattern mining[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8):11789-11800. [21] 叶宝林,孙瑞涛,吴维敏,等.基于异步优势演员-评论家的交通信号控制方法[J].浙江大学学报(工学版), 2024, 58(8):1671-1680, 1703. YE B L, SUN R T, WU W M, et al. Traffic signal control method based on asynchronous advantage actor-critic[J]. Journal of Zhejiang University (Engineering Science), 2024, 58(8):1671-1680, 1703.(in Chinese) [22] YE B L, WU P, LI L X, et al. Uniformity of Markov elements in deep reinforcement learning for traffic signal control[J]. Electronic Research Archive, 2024, 32(6):3843-3866. [23] 张尊栋,王岩楠,刘雨珂,等.基于Nash-Stackelberg分层博弈模型的路网交通控制强化学习算法[J].东南大学学报(自然科学版), 2023, 53(2):334-341. ZHANG Z D, WANG Y N, LIU Y K, et al. Road network traffic control reinforcement learning algorithms based on Nash-Stackelberg hierarchical game model[J]. Journal of Southeast University (Natural Science Edition), 2023, 53(2):334-341.(in Chinese) [24] 陈喜群,朱奕璋,吕朝锋.基于混合近端策略优化的交叉口信号相位与配时优化方法[J].交通运输系统工程与信息, 2023, 23(1):106-113. CHEN X Q, ZHU Y Z, LV C F. Signal phase and timing optimization method for intersection based on hybrid proximal policy optimization[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(1):106-113.(in Chinese) [25] YE B L, WU W M, MAO W J. A two-way arterial signal coordination method with queueing process considered[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(6):3440-3452. |