[1]ZHANG Lei,ZHANG Yi.Big data analysis by infinite deep neural networks[J].Journal of Computer Research and Development,2016,53(1):68-79.
[2]BOSCO A,LAGAN D,MUSMANNO R,et al.Modeling and solving the mixed capacitated general routing problem[J].Optimization Letters,2013,7(7):1451-1469.
[3]MIKOLOV T,SUTSKEVER I,CHEN K,et al.Distri-buted representations of words and phrases and their compositionality[J].Advances in Neural Information Processing Systems,2013,26:3111-3119.
[4]CHIU J P C,NICHOLS E.Namedentity recognition with bidirectional LSTM-CNNs[EB/OL].[2018-09-30].https://arxiv.org/pdf/1511.08308.pdf.
[5]ZHANG Suxiang,WANG Xiaojie.Automatic recognition of Chinese organization name based on conditional random fields[C]//Proceedings of International Conference on Natural Language Processing and Knowledge Engineering.Washington D.C.,USA:IEEE Press,2007:229-233.
[6]BORTHWICK A E.A maximum entropy approach to named entity recognition[D].New York,USA:New York University,1999.
[7]BIKEL D M,MILLER S,SCHWARTZ R,et al.Nymble:a high-performance learning name-finder[C]//Proceedings of the 15th Conference on Applied Natural Language Processing.Washington D.C.,USA:IEEE Press,1997:194-201.
[8]ASAHARA M,MATSUMOTO Y.Japanese named entity extraction with redundant morphological analysis[C]//Proceedings of NAACL’03.Stroudsburg,USA:Association for Computational Linguistics,2003:8-15.
[9]MCCALLUM A,LI Wei.Early results for named entity recognition with conditional random fields,feature induction and Web-enhanced lexicons[C]//Proceedings of CONLL’03.Stroudsburg,USA:Association for Computational Linguistics,2003:188-191.
[10]CHO K,VAN MERRIENBOER B,GULCEHRE C,et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL].[2018-09-30].http://anthology.aclweb.org/D/D14/D14-1179.pdf.
[11]SANTOS C N D,GATTIT M.Deep convolutional neural networks for sentiment analysis of short texts[EB/OL].[2018-09-30].http://www.aclweb.org/anthology/C14-1008.
[12]LI Jiwei,GALLEY M,BROCKETT C,et al.A diversity-promoting objective function for neural conversation models[EB/OL].[2018-09-25].https://arxiv.org/pdf/1510.03055.pdf.
[13]KARJALA T W,HIMMELBLAU D M,MIIKKULAINEN R.Data rectification using recurrent (Elman) neural networks[C]//Proceedings of International Joint Confe-rence on Neural Networks.Washington D.C.,USA:IEEE Press,1992:901-906.
[14]GRAVES A.Long short-term memory[M]//GRAVES A.Supervised sequence labelling with recurrent neural networks.Berlin,Germany:Springer,2012:1735-1780.
[15]ZHOU Guobing,WU Jianxin,ZHANG Chenlin,et al.Minimal gated unit for recurrent neural networks[J].International Journal of Automation and Computing,2016,13(3):226-234.
[16]MIKOLOV T,CHEN Kai,CORRADO G,et al.Efficient estimation of word representations in vector space[EB/OL].[2018-09-10].http://export.arxiv.org/pdf/1301.3781.
[17]BENGIO Y,SCHWENK H,SENCAL J S,et al.Neural probabilistic language models[J].Journal of Machine Learning Research,2001,3(6):1137-1155.
[18]MIKOLOV T,KARAFIT M,BURGET L,et al.Recurrent neural network based language model[EB/OL].[2018-09-25].http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf.
[19]MIKOLOV T,ZWEIG G.Context dependent recurrent neural network language model[C]//Proceedings of 2012 IEEE Spoken Language Technology Workshop.Washington D.C.,USA:IEEE Press,2012:234-239.
[20]MIKOLOV T,DEORAS A,POVEY D,et al.Strategies for training large scale neural network language models[C]//Proceedings of 2011 IEEE Workshop on Automatic Speech Recognition and Understanding.Washington D.C.,USA:IEEE Press,2011:196-201.
[21]GRAVES A,SCHMIDHUBER J.Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J].Neural Networks,2005,18(5):602-610.
[22]HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780.
[23]GRAVES A,JAITLY N,MOHAMED A R .Hybrid speech recognition with deep bidirectional LSTM[C]//Proceedings of 2013 IEEE Workshop on Automatic Speech Recognition and Understanding.Washington D.C.,USA:IEEE Press,2013:273-278.
[24]BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[EB/OL].[2018-09-15].https://arxiv.org/pdf/1409.0473.pdf.
[25]RATNAPARKHI A.A maximum entropy model for part-of-speech tagging[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing.Washington D.C.,USA:IEEE Press,1996:133-142.
[26]MCCALLUM A,FREITAG D,PEREIRA F C N.Maximum entropy Markov models for information extraction and segmentation[C]//Proceedings of the 17th International Conference on Machine Learning.Washington D.C.,USA:IEEE Press,2000:591-598.
[27]LAFFERTY J D,MCCALLUM A,PEREIRA F C N.Conditional random fields:probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 18th International Conference on Machine Learning.[S.l.]:Morgan Kaufmann Publishers Inc.,2001:282-289. |