[1] 李晓斌,郭小威,袁刚.基于逻辑靶场技术的导弹内外场联合试验训练系统[J].兵工自动化, 2019, 38(6):9-13, 28. LI X B, GUO X W, YUAN G. Infield and airfield joint testing and training system of missile based on logical range technology[J]. Ordnance Industry Automation, 2019, 38(6):9-13, 28.(in Chinese) [2] 吉玉洁,吴萌.靶场联合试验评估需求与应用研究[J].舰船电子工程, 2019, 39(6):133-137. JI Y J, WU M. Study on the requirement and application of range joint test and evaluation[J]. Ship Electronic Engineering, 2019, 39(6):133-137.(in Chinese) [3] 曾明亮,刘衍军,彭小林,等.逻辑靶场理论与应用研究[J].飞行器测控学报, 2011, 30(3):89-94. ZENG M L, LIU Y J, PENG X L, et al. The theory of logical range and its application[J]. Journal of Spacecraft TT&C Technology, 2011, 30(3):89-94.(in Chinese) [4] 张源原,高阳,周晓光,等.逻辑靶场操作流程设计[J].兵工自动化, 2022, 41(4):44-48. ZHANG Y Y, GAO Y, ZHOU X G, et al. Logical range operation flow design[J]. Ordnance Industry Automation, 2022, 41(4):44-48.(in Chinese) [5] THELEN A, ZHANG X G, FINK O, et al. A comprehensive review of digital twin-part 1:modeling and twinning enabling technologies[J]. Structural and Multidisciplinary Optimization, 2022, 65(12):354. [6] HE B, BAI K J. Digital twin-based sustainable intelligent manufacturing:a review[J]. Advances in Manufacturing, 2021, 9(1):1-21. [7] ZHU Q Z, HUANG S H, WANG G X, et al. Dynamic reconfiguration optimization of intelligent manufacturing system with human-robot collaboration based on digital twin[J]. Journal of Manufacturing Systems, 2022, 65:330-338. [8] 孟松鹤,叶雨玫,杨强,等.数字孪生及其在航空航天中的应用[J].航空学报, 2020, 41(9):023615. MENG S H, YE Y M, YANG Q, et al. Digital twin and its aerospace applications[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9):023615.(in Chinese) [9] LIU S M, BAO J S, LU Y Q, et al. Digital twin modeling method based on biomimicry for machining aerospace components[J]. Journal of Manufacturing Systems, 2021, 58:180-195. [10] LIU Y, PAN S L, FOLZ P, et al. Cognitive digital twins for freight parking management in last mile delivery under smart cities paradigm[J]. Computers in Industry, 2023, 153:104022. [11] 王健松,李学俊,王桂娟,等.基于数字孪生的城市交通流量可视预测研究[J].计算机技术与发展, 2024, 34(7):192-198. WANG J S, LI X J, WANG G J, et al. City traffic flow visual prediction based on digital twin[J]. Computer Technology and Development, 2024, 34(7):192-198.(in Chinese) [12] ONO S, YAMAZAKI T, MIYOSHI T, et al. AMoND:area-controlled mobile ad-hoc networking with digital twin[J]. IEEE Access, 2023, 11:85224-85236. [13] 李达港,李磊,金连文,等.基于时间序列的Openstack云计算平台负载预测与弹性资源调度的研究[J].重庆邮电大学学报(自然科学版), 2016, 28(4):560-566. LI D G, LI L, JIN L W, et al. Research of load forecasting and elastic resources scheduling of Openstack platform based on time series[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2016, 28(4):560-566.(in Chinese) [14] HE J, HONG S Y, ZHANG C Q, et al. A method to cloud computing resources requirement prediction on SaaS application[C]//Proceedings of the International Conference on Machine Learning and Intelligent Systems Engineering (MLISE). Washington D.C., USA:IEEE Press, 2021:107-116. [15] SHYAM G K, MANVI S S. Virtual resource prediction in cloud environment:a Bayesian approach[J]. Journal of Network and Computer Applications, 2016, 65:144-154. [16] SUN W, ZHANG H, PALAZOGLU A, et al. Prediction of 24-hour-average PM2.5 concentrations using a hidden Markov model with different emission distributions in Northern California[J]. Science of the Total Environment, 2013, 443:93-103. [17] LIU X M, XIE X L, GUO Q. Research on cloud computing load forecasting based on LSTM-ARIMA combined model[C]//Proceedings of the 10th International Conference on Advanced Cloud and Big Data (CBD). Washington D.C., USA:IEEE Press, 2022:19-23. [18] MEHDI H, POORANIAN Z, NARANJO P G V. Cloud traffic prediction based on fuzzy ARIMA model with low dependence on historical data[J]. Transactions on Emerging Telecommunications Technologies, 2022, 33(3):e3731. [19] XIE Y L, JIN M P, ZOU Z P, et al. Real-time prediction of docker container resource load based on a hybrid model of ARIMA and triple exponential smoothing[J]. IEEE Transactions on Cloud Computing, 2022, 10(2):1386-1401. [20] SHARMA A K, PUNJ P, KUMAR N, et al. Lifetime prediction of a hydraulic pump using ARIMA model[J]. Arabian Journal for Science and Engineering, 2024, 49(2):1713-1725. [21] KARIM M E, MASWOOD M M S, DAS S, et al. BHyPreC:a novel Bi-LSTM based hybrid recurrent neural network model to predict the CPU workload of cloud virtual machine[J]. IEEE Access, 2021, 9:131476-131495. [22] PATEL E, KUSHWAHA D S. A hybrid CNN-LSTM model for predicting server load in cloud computing[J]. The Journal of Supercomputing, 2022, 78(8):1-30. [23] KUMAR J, GOOMER R, SINGH A K. Long Short Term Memory Recurrent Neural Network (LSTM-RNN) based workload forecasting model for cloud datacenters[J]. Procedia Computer Science, 2018, 125:676-682. [24] XI C P, LIU R Q. Detection of small floating target on sea surface based on Gramian angular field and improved EfficientNet[J]. Remote Sensing, 2022, 14(17):4364. [25] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3):531-544. [26] 张军惺,陈孜迪,谢凤玲.基于改进麻雀搜索算法的无线传感器网络定位研究[J].传感技术学报, 2024, 37(3):524-532. ZHANG J X, CHEN Z D, XIE F L. Research on wireless sensor network location based on improved sparrow search algorithm[J]. Chinese Journal of Sensors and Actuators, 2024, 37(3):524-532.(in Chinese) [27] NGUYEN H M, KALRA G, KIM D. Host load prediction in cloud computing using long short-term memory encoder-decoder[J]. The Journal of Supercomputing, 2019, 75(11):7592-7605. [28] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2017:6000-6010. [29] 贺小伟,徐靖杰,王宾,等.基于GRU-LSTM组合模型的云计算资源负载预测研究[J].计算机工程, 2022, 48(5):11-17, 34. HE X W, XU J J, WANG B, et al. Research on cloud computing resource load forecasting based on GRU-LSTM combination model[J]. Computer Engineering, 2022, 48(5):11-17, 34.(in Chinese) [30] KIM J, OH S, KIM H, et al. Tutorial on time series prediction using 1D-CNN and BiLSTM:a case example of peak electricity demand and system marginal price prediction[J]. Engineering Applications of Artificial Intelligence, 2023, 126:106817. [31] ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer:beyond efficient Transformer for long sequence time-series forecasting[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, USA:AAAI Press, 2021:11106-11115. [32] ZENG A L, CHEN M X, ZHANG L, et al. Are Transformers effective for time series forecasting?[C]//Proceedings of the 37th AAAI Conference on Artificial Intelligence and 35th Conference on Innovative Applications of Artificial Intelligence and the 13th Symposium on Educational Advances in Artificial Intelligence. New York, USA:ACM Press, 2023:11121-11128. [33] WU H X, HU T G, LIU Y, et al. TimesNet:temporal 2D-variation modeling for general time series analysis[EB/OL].[2024-06-04] . https://arxiv.org/abs/2210.02186v3. |