[1] SULTANA N, CHILAMKURTI N, PENG W, et al.Survey on SDN based network intrusion detection system using machine learning approaches[J].Peer-to-Peer Networking and Applications, 2019, 12(2):493-501. [2] FARHAN B I, JASIM A D.A survey of intrusion detection using deep learning in Internet of Things[J].IRAQI Journal for Computer Science and Mathematics, 2022, 3(1):83-93. [3] 刘奇旭, 陈艳辉, 尼杰硕, 等.基于机器学习的工业互联网入侵检测综述[J].计算机研究与发展, 2022, 59(5):994-1014. LIU Q X, CHEN Y H, NI J S, et al.Survey on machine learning-based anomaly detection for industrial Internet[J].Journal of Computer Research and Development, 2022, 59(5):994-1014.(in Chinese) [4] 周杰英, 贺鹏飞, 邱荣发, 等.融合随机森林和梯度提升树的入侵检测研究[J].软件学报, 2021, 32(10):3254-3265. ZHOU J Y, HE P F, QIU R F, et al.Research on intrusion detection based on random forest and gradient boosting tree[J].Journal of Software, 2021, 32(10):3254-3265.(in Chinese) [5] 张玲, 张建伟, 桑永宣, 等.基于随机森林与人工免疫的入侵检测算法[J].计算机工程, 2020, 46(8):146-152. ZHANG L, ZHANG J W, SANG Y X, et al.Intrusion detection algorithm based on random forest and artificial immunity[J].Computer Engineering, 2020, 46(8):146-152.(in Chinese) [6] 戚名钰, 刘铭, 傅彦铭.基于PCA的SVM网络入侵检测研究[J].信息网络安全, 2015(2):15-18. QI M Y, LIU M, FU Y M.Research on network intrusion detection using support vector machines based on principal component analysis[J].Netinfo Security, 2015(2):15-18.(in Chinese) [7] 王旭仁, 马慧珍, 冯安然, 等.基于信息增益与主成分分析的网络入侵检测方法[J].计算机工程, 2019, 45(6):175-180. WANG X R, MA H Z, FENG A R, et al.Network intrusion detection method based on information gain and principal components analysis[J].Computer Engineering, 2019, 45(6):175-180.(in Chinese) [8] ZHANG H, LI J L, LIU X M, et al.Multi-dimensional feature fusion and stacking ensemble mechanism for network intrusion detection[J].Future Generation Computer Systems, 2021, 122:130-143. [9] 张玉清, 董颖, 柳彩云, 等.深度学习应用于网络空间安全的现状、趋势与展望[J].计算机研究与发展, 2018, 55(6):1117-1142. ZHANG Y Q, DONG Y, LIU C Y, et al.Situation, trends and prospects of deep learning applied to cyberspace security[J].Journal of Computer Research and Development, 2018, 55(6):1117-1142.(in Chinese) [10] AL-TURAIKI I, ALTWAIJRY N.A convolutional neural network for improved anomaly-based network intrusion detection[J].Big Data, 2021, 9(3):233-252. [11] SINGH N B, SINGH M M, SARKAR A, et al.A novel wide & deep transfer learning stacked GRU framework for network intrusion detection[J].Journal of Information Security and Applications, 2021, 61:102899. [12] NGUYEN M T, KIM K.Genetic convolutional neural network for intrusion detection systems[J].Future Generation Computer Systems, 2020, 113:418-427. [13] 刘月峰, 蔡爽, 杨涵晰, 等.融合CNN与BiLSTM的网络入侵检测方法[J].计算机工程, 2019, 45(12):127-133. LIU Y F, CAI S, YANG H X, et al.Network intrusion detection method integrating CNN and BiLSTM[J].Computer Engineering, 2019, 45(12):127-133.(in Chinese) [14] 石乐义, 朱红强, 刘祎豪, 等.基于相关信息熵和CNN-BiLSTM的工业控制系统入侵检测[J].计算机研究与发展, 2019, 56(11):2330-2338. SHI L Y, ZHU H Q, LIU W H, et al.Intrusion detection of industrial control system based on correlation information entropy and CNN-BiLSTM[J].Journal of Computer Research and Development, 2019, 56(11):2330-2338.(in Chinese) [15] 马明艳.基于深度学习的多分类入侵检测研究[D].南京:南京邮电大学, 2021. MA M Y.Research on multi-class intrusion detection based on deep learning[D].Nanjing:Nanjing University of Posts and Telecommunications, 2021.(in Chinese) [16] 生龙, 袁丽娜, 武南南, 等.基于GSA与DE优化混合核ELM的网络异常检测模型[J].计算机工程, 2022, 48(6):146-153. SHENG L, YUAN L N, WU N N, et al.Network anomaly detection model based on GSA and DE optimizing hybrid kernel ELM[J].Computer Engineering, 2022, 48(6):146-153.(in Chinese) [17] 魏思政, 刘厚泉, 赵志凯.基于DBN-ELM的入侵检测研究[J].计算机工程, 2018, 44(9):153-158. WEI S Z, LIU H Q, ZHAO Z K.Research on intrusion detection based on DBN-ELM[J].Computer Engineering, 2018, 44(9):153-158.(in Chinese) [18] JOHNSON J M, KHOSHGOFTAAR T M.Survey on deep learning with class imbalance[J].Journal of Big Data, 2019, 6(1):1-14. [19] FERNANDO K R M, TSOKOS C P.Dynamically weighted balanced loss:class imbalanced learning and confidence calibration of deep neural networks[J].IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(7):2940-2951. [20] LIU L, WANG P C, LIN J, et al.Intrusion detection of imbalanced network traffic based on machine learning and deep learning[J].IEEE Access, 2020, 9:7550-7563. [21] JEATRAKUL P, WONG K W, FUNG C C.Classification of imbalanced data by combining the complementary neural network and SMOTE algorithm[C]//Proceedings of the 17th International Conference on Neural Information Processing:Models and Applications.New York, USA:ACM Press, 2010:152-159. [22] ARJOVSKY M, CHINTALA S, BOTTOU L.Wasserstein GAN[EB/OL].[2022-06-13].https://arxiv.org/abs/1701.07875. [23] TAVALLAEE M, BAGHERI E, LU W, et al.A detailed analysis of the KDD CUP 99 data set[C]//Proceedings of IEEE Symposium on Computational Intelligence for Security and Defense Applications.Washington D.C., USA:IEEE Press, 2009:1-6. [24] ZHU X, SOBIHANI P, GUO H.Long short-term memory over recursive structures[C]//Proceedings of the 32nd International Conference on Machine Learning.New York, USA:ACM Press, 2015:1604-1612. [25] HE H B, GARCIA E A.Learning from imbalanced data[J].IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9):1263-1284. [26] GAMAGE S, SAMARABANDU J.Deep learning methods in network intrusion detection:a survey and an objective comparison[J].Journal of Network and Computer Applications, 2020, 169:102767. |