1 |
王志锋, 熊莎莎, 左明章, 等. 智慧教育视域下的知识追踪: 现状、框架及趋势. 远程教育杂志, 2021, 39 (5): 45- 54.
|
|
WANG Z F , XIONG S S , ZUO M Z , et al. Knowledge tracing from the perspective of smart education: current situation, framework and trend. Journal of Distance Education, 2021, 39 (5): 45- 54.
|
2 |
PIECH C , BASSEN J , HUANG J , et al. Deep knowledge tracing. Advances in Neural Information Processing Systems, 2015, 28, 505- 513.
|
3 |
HOCHREITER S , SCHMIDHUBER J . Long short-term memory. Neural Computation, 1997, 9 (8): 1735- 1780.
doi: 10.1162/neco.1997.9.8.1735
|
4 |
|
5 |
LIU Q , HUANG Z Y , YIN Y , et al. EKT: exercise-aware knowledge tracing for student performance prediction. IEEE Transactions on Knowledge and Data Engineering, 2021, 33 (1): 100- 115.
doi: 10.1109/TKDE.2019.2924374
|
6 |
CHOI Y, LEE Y, CHO J, et al. Towards an appropriate query, key, and value computation for knowledge tracing[C]//Proceedings of the 17th ACM Conference on Learning @ Scale. New York, USA: ACM Press, 2020: 341-344.
|
7 |
MURRAY R C, RITTER S, NIXON T, et al. Revealing the learning in learning curves[M]//LANE H C, YACEF K, MOSTOW J, et al. Artificial intelligence in education. Berlin, Germany: Springer, 2013: 473-482.
|
8 |
KYLLONEN P C , TIRRE W C . Individual differences in associative learning and forgetting. Intelligence, 1988, 12 (4): 393- 421.
doi: 10.1016/0160-2896(88)90004-9
|
9 |
李晓光, 魏思齐, 张昕, 等. LFKT: 学习与遗忘融合的深度知识追踪模型. 软件学报, 2021, 32 (3): 818- 830.
|
|
LI X G , WEI S Q , ZHANG X , et al. LFKT: a deep knowledge tracking model based on the fusion of learning and forgetting. Journal of Software, 2021, 32 (3): 818- 830.
|
10 |
SHEN S H, LIU Q, CHEN E H, et al. Learning process-consistent knowledge tracing[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2021: 1452-1460.
|
11 |
SHIN D, SHIM Y, YU H, et al. SAINT+: integrating temporal features for EdNet correctness prediction[C]//Proceedings of the 11th International Learning Analytics and Knowledge Conference. New York, USA: ACM Press, 2021: 490-496.
|
12 |
CORBETT A T , ANDERSON J R . Knowledge tracing: modeling the acquisition of procedural knowledge. User Modeling and User-Adapted Interaction, 1994, 4 (4): 253- 278.
|
13 |
KHAJAH M M, WING R, LINDSEY R V, et al. Integrating latent-factor and knowledge-tracing models to predict individual differences in learning[C]//Proceedings of the 17th International Conference on Educational Data Mining. Washington D. C., USA: IEEE Press, 2014: 99-106.
|
14 |
|
15 |
EMBRETSON S E , REISE S P . Item response theory. [S. l.]: Psychology Press, 2013.
|
16 |
BARTON M A , LORD F M . An upper asymptote for the three-parameter logistic item-response model. ETS Research Report Series, 1981 (1): 1- 8.
|
17 |
CEN H, KOEDINGER K, JUNKER B. Comparing two IRT models for conjunctive skills[C]//Proceedings of the 9th International Conference on Intelligent Tutoring Systems. Montreal, Canada: [s. n. ], 2008: 796-798.
|
18 |
VIE J J , KASHIMA H . Knowledge tracing machines: factorization machines for knowledge tracing. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33 (1): 750- 757.
|
19 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 6000-6010.
|
20 |
YIN Y, DAI L, HUANG Z Y, et al. Tracing knowledge instead of patterns: stable knowledge tracing with diagnostic transformer[C]//Proceedings of the 2023 ACM Web Conference. New York, USA: ACM Press, 2023: 855-864.
|
21 |
NI Q , WEI T J , ZHAO J B , et al. HHSKT: a learner-question interactions based heterogeneous graph neural network model for knowledge tracing. Expert Systems with Applications, 2023, 215, 119334.
|
22 |
邵小萌, 张猛. 融合注意力机制的时间卷积知识追踪模型. 计算机应用, 2023, 43 (2): 343- 348.
|
|
SHAO X M , ZHANG M . Temporal convolutional knowledge tracing model with attention mechanism. Journal of Computer Applications, 2023, 43 (2): 343- 348.
|
23 |
GHOSH A, HEFFERNAN N, LAN A S. Context-aware attentive knowledge tracing[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2020: 2330-2339.
|
24 |
RASCH G . Probabilistic models for some intelligence and attainment tests. [S. l.]: MESA Press, 1993.
|
25 |
|
26 |
PANDEY S, SRIVASTAVA J. RKT: relation-aware self-attention for knowledge tracing[C]//Proceedings of the 29th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2020: 1205-1214.
|
27 |
SHEN S H, LIU Q, CHEN E H, et al. Convolutional knowledge tracing: modeling individualization in student learning process[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2020: 1857-1860.
|
28 |
LONG T, QIN J R, SHEN J, et al. Improving knowledge tracing with collaborative information[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2022: 599-607.
|
29 |
ZHAO W Z , XIA J , JIANG X P , et al. A novel framework for deep knowledge tracing via gating-controlled forgetting and learning mechanisms. Information Processing & Management, 2023, 60 (1): 103114.
|
30 |
LIU T , ZHANG M , ZHU C , et al. Transformer-based convolutional forgetting knowledge tracking. Scientific Reports, 2023, 13 (1): 19112.
|
31 |
NAGATANI K, ZHANG Q, SATO M, et al. Augmenting knowledge tracing by considering forgetting behavior[C]//Proceedings of the World Wide Web Conference. New York, USA: ACM Press, 2019: 3101-3107.
|
32 |
CHEN Y Y, LIU Q, HUANG Z Y, et al. Tracking knowledge proficiency of students with educational priors[C]//Proceedings of the 2017 ACM Conference on Information and Knowledge Management. New York, USA: ACM Press, 2017: 989-998.
|
33 |
HUANG Z Y , LIU Q , CHEN Y Y , et al. Learning or forgetting? A dynamic approach for tracking the knowledge proficiency of students. ACM Transactions on Information Systems, 2020, 38 (2): 1- 33.
|
34 |
ABDELRAHMAN G , WANG Q . Deep graph memory networks for forgetting-robust knowledge tracing. IEEE Transactions on Knowledge and Data Engineering, 2022, 35 (8): 1- 13.
|
35 |
|