1 |
郭宇阳, 胡伟超, 戴帅, 等. 面向路侧交通监控场景的轻量车辆检测模型. 计算机工程与应用, 2022, 58 (6): 192- 199.
|
|
GUO Y Y , HU W C , DAI S , et al. Lightweight vehicle detection model for roadside traffic monitoring scenarios. Computer Engineering and Applications, 2022, 58 (6): 192- 199.
|
2 |
李松江, 耿兰兰, 王鹏. 基于改进Yolov4的车辆目标检测. 计算机工程, 2023, 49 (4): 272- 280.
doi: 10.19678/j.issn.1000-3428.0062943
|
|
LI S J , GENG L L , WANG P . Vehicle target detection based on improved Yolov4. Computer Engineering, 2023, 49 (4): 272- 280.
doi: 10.19678/j.issn.1000-3428.0062943
|
3 |
毛其超, 贾瑞生, 左羚群, 等. 基于深度学习的交通监控视频车辆检测算法. 计算机应用与软件, 2020, 37 (9): 111-117, 164.
|
|
MAO Q C , JIA R S , ZUO L Q , et al. A traffic surveillance video vehicle detection method based on deep learning. Computer Applications and Software, 2020, 37 (9): 111-117, 164.
|
4 |
SUN Z , BEBIS G , MILLER R . On-road vehicle detection: a review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28 (5): 694- 711.
doi: 10.1109/TPAMI.2006.104
|
5 |
WANG Z , ZHAN J , DUAN C , et al. A review of vehicle detection techniques for intelligent vehicles. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34 (8): 3811- 3831.
doi: 10.1109/TNNLS.2021.3128968
|
6 |
MAJOR B, FONTIJNE D, ANSARI A, et al. Vehicle detection with automotive radar using deep learning on range-azimuth-Doppler tensors[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. Washington D.C., USA: IEEE, 2019.
|
7 |
ANTONY J J , SUCHETHA M . Vision based vehicle detection: a literature review. International Journal of Applied Engineering Research, 2016, 11 (5): 3128- 3133.
|
8 |
SUN Z , BEBIS G , MILLER R . Monocular precrash vehicle detection: features and classifiers. IEEE Transactions on Image Processing, 2006, 15 (7): 2019- 2034.
doi: 10.1109/TIP.2006.877062
|
9 |
WEN X Z , SHAO L , FANG W , et al. Efficient feature selection and classification for vehicle detection. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25 (3): 508- 517.
doi: 10.1109/TCSVT.2014.2358031
|
10 |
HASSABALLAH M , KENK M A , MUHAMMAD K , et al. Vehicle detection and tracking in adverse weather using a deep learning framework. IEEE Transactions on Intelligent Transportation Systems, 2020, 22 (7): 4230- 4242.
|
11 |
李琳辉, 伦智梅, 连静, 等. 基于卷积神经网络的道路车辆检测方法. 吉林大学学报(工学版), 2017, 47 (2): 384- 391.
|
|
LI L H , LUN Z M , LIAN J , et al. A convolutional neural network based approach for road vehicle detection. Journal of Jilin University(Engineering and Technology Edition), 2017, 47 (2): 384- 391.
|
12 |
WANG H , YU Y , CAI Y , et al. A comparative study of state-of-the-art deep learning algorithms for vehicle detection. IEEE Intelligent Transportation Systems Magazine, 2019, 11 (2): 82- 95.
doi: 10.1109/MITS.2019.2903518
|
13 |
SONG H , LIANG H , LI H , et al. Vision-based vehicle detection and counting system using deep learning in highway scenes. European Transport Research Review, 2019, 11 (1): 1- 16.
doi: 10.1186/s12544-018-0328-2
|
14 |
李凯, 林宇舜, 吴晓琳, 等. 基于多尺度融合与注意力机制的小目标车辆检测. 浙江大学学报(工学版), 2022, 56 (11): 2241- 2250.
doi: 10.3785/j.issn.1008-973X.2022.11.015
|
|
LI K , LIN Y S , WU X L , et al. Small-target vehicle detection based on multi-scale fusion and attention mechanism. Journal of Zhejiang University(Engineering Science), 2022, 56 (11): 2241- 2250.
doi: 10.3785/j.issn.1008-973X.2022.11.015
|
15 |
GOMAA A , MINEMATSU T , ABDELWAHAB M M , et al. Faster CNN-based vehicle detection and counting strategy for fixed camera scenes. Multimedia Tools and Applications, 2022, 81 (18): 25443- 25471.
doi: 10.1007/s11042-022-12370-9
|
16 |
FAN Q, BROWN L, SMITH J. A closer look at Faster R-CNN for vehicle detection[C]// Proceedings of 2016 IEEE Intelligent Vehicles Symposium (Ⅳ). Washington D.C., USA: IEEE, 2016.
|
17 |
HAUSLER S, GARG S, CHAKRAVARTY P, et al. DisPlacing objects: improving dynamic vehicle detection via visual place recognition under adverse conditions[EB/OL]. [2023-09-10]. http://arxiv.org/abs/2306.17536.
|
18 |
DESHMUKH P , SATYANARAYANA G S R , MAJHI S , et al. Swin Transformer based vehicle detection in undisciplined traffic environment. Expert Systems with Applications, 2023, 213, 118992.
doi: 10.1016/j.eswa.2022.118992
|
19 |
|
20 |
|
21 |
WEN L , DU D , CAI Z , et al. UA-DETRAC: a new benchmark and protocol for multi-object detection and tracking. Computer Vision and Image Understanding, 2020, 193, 102907.
doi: 10.1016/j.cviu.2020.102907
|
22 |
DEEPAK M, AVINASH R, GITAKRISHNAN R, et al. Training a deep learning architecture for vehicle detection using limited heterogeneous traffic data[C]//Proceedings of 201810th International Conference on Communication Systems & Networks (COMSNETS). Washington D.C., USA: IEEE, 2018.
|
23 |
GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE, 2015: 1440-1448.
|
24 |
NORKOBIL S S , ABDUSALOMOV A , JAMIL M K , et al. A YOLOv6-based improved fire detection approach for smart city environments. Sensors, 2023, 23 (6): 3161.
doi: 10.3390/s23063161
|
25 |
DUAN K, BAI S, XIE L, et al. CenterNet: keypoint triplets for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE, 2019: 6569-6578.
|
26 |
CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer International Publishing, 2020: 213-229.
|
27 |
|
28 |
YAO J W, LI C M, SUN K Q, et al. NDC-scene: boost monocular 3D semantic scene completion in normalized device coordinates space[C]//Proceedings of 2023 IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE, 2023.
|