1 |
EVERINGHAM M , ESLAMI S M A , VAN GOOL L , et al. The pascal visual object classes challenge: a retrospective. International Journal of Computer Vision, 2015, 111, 98- 136.
doi: 10.1007/s11263-014-0733-5
|
2 |
褚张晴晴, 钟志强, 颜子夜, 等. 基于特征融合与注意力机制的脑肿瘤分割算法. 计算机工程, 2023, 49 (10): 154- 161.
doi: 10.19678/j.issn.1000-3428.0066311
|
|
CHU Z Q Q , ZHONG Z Q , YAN Z Y , et al. Brain tumor segmentation algorithm based on feature fusion and attention mechanism. Computer Engineering, 2023, 49 (10): 154- 161.
doi: 10.19678/j.issn.1000-3428.0066311
|
3 |
徐蓬泉, 梁宇翔, 李英. 融合多尺度语义和剩余瓶颈注意力的医学图像分割. 计算机工程, 2023, 49 (10): 162- 170.
doi: 10.19678/j.issn.1000-3428.0065985
|
|
XU P Q , LIANG Y X , LI Y . Medical image segmentation fusing multi-scale semantic and residual bottleneck attention. Computer Engineering, 2023, 49 (10): 162- 170.
doi: 10.19678/j.issn.1000-3428.0065985
|
4 |
杨本臣, 贾宇航, 金海波. 融合多分支特征的肝脏和肝脏肿瘤的体积分割. 计算机工程, 2023, 49 (10): 194- 201.
doi: 10.19678/j.issn.1000-3428.0066125
|
|
YANG B C , JIA Y H , JIN H B . Volume segmentation of liver and liver tumor with fusion of multibranch features. Computer Engineering, 2023, 49 (10): 194- 201.
doi: 10.19678/j.issn.1000-3428.0066125
|
5 |
BATENBURG K J , SIJBERS J . Optimal threshold selection for tomogram segmentation by projection distance minimization. IEEE Transactions on Medical Imaging, 2009, 28 (5): 676- 686.
doi: 10.1109/TMI.2008.2010437
|
6 |
HARIHARAN B, ARBELÁEZ P, GIRSHICK R, et al. Simultaneous detection and segmentation[C]//Proceedings of the 13th European Conference on Computer Vision. Berlin, Germany: Springer, 2014: 297-312.
|
7 |
SHRIVAKSHAN G T , CHANDRASEKAR C . A comparison of various edge detection techniques used in image processing. International Journal of Computer Science Issues, 2012, 9 (5): 269- 276.
|
8 |
LITJENS G , KOOI T , BEJNORDI B E , et al. A survey on deep learning in medical image analysis. Medical Image Analysis, 2017, 42, 60- 88.
doi: 10.1016/j.media.2017.07.005
|
9 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2015: 234-241.
|
10 |
ZHOU Z W, SIDDIQUEE M M R, NIMA T, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]//Proceedings of Workshop on Deep Learning in Medical Image Analysis. Berlin, Germany: Springer, 2018: 3-11.
|
11 |
HUANG H M, LIN L F, TONG R F, et al. UNet 3+: a full-scale connected UNet for medical image segmentation[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2020). Washington D. C., USA: IEEE Press, 2020: 1055-1059.
|
12 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2016: 770-778.
|
13 |
PENG D L , XIONG S Y , PENG W J , et al. LCP-Net: a local context-perception deep neural network for medical image segmentation. Expert Systems with Applications, 2021, 168, 114234.
doi: 10.1016/j.eswa.2020.114234
|
14 |
CHEN R, WANG X, JIN B, et al. CLD-Net: complement local detail for medical small-object segmentation[C]//Proceedings of 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Washington D. C., USA: IEEE Press, 2022: 942-947.
|
15 |
HUANG Q , SU J , PRZYSTUPA K , et al. BSANet: highperformance 3D medical image segmentation. IEEE Access, 2023, 11, 79213- 79223.
doi: 10.1109/ACCESS.2023.3299491
|
16 |
张艳, 马春明, 刘树东, 等. 基于多尺度特征增强的高效Transformer语义分割网络. 光电工程, 2024, 51 (12): 240237.
doi: 10.12086/oee.2024.240237
|
|
ZHANG Y , MA C M , LIU S D , et al. Multi-scale feature enhanced Transformer network for efficient semantic segmentation. Opto-Electronic Engineering, 2024, 51 (12): 240237.
doi: 10.12086/oee.2024.240237
|
17 |
WANG J , ZHAO H Y , LIANG W , et al. Cross-convolutional transformer for automated multi-organs segmentation in a variety of medical images. Physics in Medicine & Biology, 2023, 68 (3): 035008.
|
18 |
KANG S , YANG M , QI X S , et al. Bridging feature gaps to improve multi-organ segmentation on abdominal magnetic resonance image. IEEE Journal of Biomedical and Health Informatics, 2023, 27 (3): 1477- 1487.
doi: 10.1109/JBHI.2022.3229315
|
19 |
SHEN N , WANG Z , LI J , et al. Multi-organ segmentation network for abdominal CT images based on spatial attention and deformable convolution. Expert Systems with Applications, 2023, 211, 118625.
|
20 |
徐辉, 祝玉华, 甄彤, 等. 深度神经网络图像语义分割方法综述. 计算机科学与探索, 2021, 15 (1): 47- 59.
|
|
XU H , ZHU Y H , ZHEN T , et al. Survey of image semantic segmentation methods based on deep neural network. Journal of Frontiers of Computer Science and Technology, 2021, 15 (1): 47- 59.
|
21 |
田萱, 王亮, 丁琪. 基于深度学习的图像语义分割方法综述. 软件学报, 2019, 30 (2): 440- 468.
|
|
TIAN X , WANG L , DING Q . Review of image semantic segmentation based on deep learning. Journal of Software, 2019, 30 (2): 440- 468.
|
22 |
HU J , SHEN L , ALBANIE S , et al. Squeeze-and-excitation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42, 2011- 2023.
|
23 |
ROY A G, NAVAB N, WACHINGER C. Concurrent spatial and channel 'squeeze & excitation'in fully convolutional networks[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2018: 421-429.
|
24 |
FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 3146-3154.
|
25 |
|
26 |
SCHLEMPER J , OKTAY O , SCHAAP M , et al. Attention gated networks: learning to leverage salient regions in medical images. Medical Image Analysis, 2019, 53, 197- 207.
|
27 |
GU Z W , CHENG J , FU H Z , et al. CE-Net: context encoder network for 2D medical image segmentation. IEEE Transactions on Medical Imaging, 2019, 38 (10): 2281- 2292.
|
28 |
SINHA A , DOLZ J . Multi-scale self-guided attention for medical image segmentation. IEEE Journal of Biomedical and Health Informatics, 2021, 25 (1): 121- 130.
|
29 |
HUANG Z L , WANG X G , WEI Y C , et al. CCNet: criss-cross attention for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (6): 6896- 6908.
|
30 |
SONG J H , CHEN X J , ZHU Q L , et al. Global and local feature reconstruction for medical image segmentation. IEEE Transactions on Medical Imaging, 2022, 41 (9): 2273- 2284.
|
31 |
|
32 |
WANG H Y, XIE S, LIN L F, et al. Mixed transformer U-Net for medical image segmentation[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Washington D.C., USA: IEEE Press, 2022: 2390-2394.
|
33 |
LIN G, CHEN L. A multi-scale fusion network with transformer for medical image segmentation[C]//Proceedings of the 3rd International Conference on Neural Networks, Information and Communication Engineering. Washington D.C., USA: IEEE Press, 2023: 224-228.
|
34 |
YU J, HE X, QIN J, et al. Trans-UNeter: a new decoder of Trans-UNet for medical image segmentation[C]//Proceedings of IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Washington D.C., USA: IEEE Press, 2023: 2338-2341.
|
35 |
ZHAO L, TIAN X, LIU Y. Transformer based position information enhancement for medical image segmentation[C]//Proceedings of the 4th Asia Conference on Information Engineering (ACIE). Washington D.C., USA: IEEE Press, 2024: 92-96.
|