1 |
|
2 |
LI X, THICKSTUN J, GULRAJANI I, et al. Diffusion-lm improves controllable text generation[C]//Proceedings of Advances in Neural Information Processing Systems. [S. l. ]: AAAI Press, 2022: 4328-4343.
|
3 |
|
4 |
闫志浩, 周长兵, 李小翠. 生成扩散模型研究综述. 计算机科学, 2024, 51 (1): 273- 283.
|
|
YAN Z H , ZHOU C B , LI X C . Survey on generative diffusion model. Computer Science, 2024, 51 (1): 273- 283.
|
5 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2015: 234-241.
|
6 |
李豪宇, 陈晔曜, 蒋志迪, 等. 基于子光场遮挡融合的无监督光场深度估计. 光电工程, 2024, 51 (10): 240166.
|
|
LI H Y , CHEN Y Y , JIANG Z D , et al. Unsupervised light field depth estimation based on sub-light field occlusion fusion. Opto-Electronic Engineering, 2024, 51 (10): 240166.
|
7 |
PEEBLES W, XIE S. Scalable diffusion models with transformers[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2023: 4195-4205.
|
8 |
|
9 |
CAO Y, LI S, LIU Y, et al. A comprehensive survey of AI-Generated Content (AIGC): a history of generative AI from gan to ChatGPT[EB/OL]. [2023-10-03]. https://arxiv.org/abs/2303.04226.
|
10 |
HINTON G E , SALAKHUTDINOV R R . Reducing the dimensionality of data with neural networks. science, 2006, 313 (5786): 504- 507.
doi: 10.1126/science.1127647
|
11 |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2014: 2672-2680.
|
12 |
HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[C]//Proceedings of Advances in Neural Information Processing Systems. [S. l. ]: AAAI Press, 2020: 6840-6851.
|
13 |
SIDDIQUE N , PAHEDING S , ELKIN C P , et al. U-Net and its variants for medical image segmentation: a review of theory and applications. IEEE Access, 2021, 9, 82031- 82057.
doi: 10.1109/ACCESS.2021.3086020
|
14 |
WU J , LIU W L , LI C , et al. A state-of-the-art survey of U-Net in microscopic image analysis: from simple usage to structure mortification. Neural Computing and Applications, 2023, 36, 3317- 3346.
|
15 |
ROMBACH R, BLATTMANN A, LORENZ D, et al. High-resolution image synthesis with latent diffusion models[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2022: 10684-10695.
|
16 |
赵宏, 李文改. 基于扩散生成对抗网络的文本生成图像模型研究. 电子与信息学报, 2023, 45 (12): 4371- 4381.
|
|
ZHAO H , LI W G . Text-to-image generation model based on diffusion Wasserstein generative adversarial networks. Journal of Electronics & Information Technology, 2023, 45 (12): 4371- 4381.
|
17 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 6000-6010.
|
18 |
LIU Y , ZHANG Y , WANG Y X , et al. A survey of visual transformers. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (6): 7478- 7498.
doi: 10.1109/TNNLS.2022.3227717
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
HASSANI A, WALTON S, LI J, et al. Neighborhood attention transformer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 6185-6194.
|
24 |
DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2009: 248-255.
|
25 |
HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[EB/OL]. [2023-10-03]. https://arxiv.org/pdf/1706.08500.
|
26 |
|
27 |
HESSEL J, HOLTZMAN A, FORBES M, et al. CLIPscore: a reference-free evaluation metric for image captioning[EB/OL]. [2023-10-03]. https://arxiv.org/pdf/1801.01973.
|
28 |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2015: 1-9.
|
29 |
|