1 |
VAHDANI E , TIAN Y L . Deep learning-based action detection in untrimmed videos: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (4): 4302- 4320.
doi: 10.1109/TPAMI.2022.3193611
|
2 |
安峰民, 张冰冰, 董微, 等. 面向视频行为识别深度模型的数据预处理方法. 计算机工程, 2024, 50 (2): 281- 287.
doi: 10.19678/j.issn.1000-3428.0066795
|
|
AN F M , ZHANG B B , DONG W , et al. A data preprocessing method for video action recognition depth models. Computer Engineering, 2024, 50 (2): 281- 287.
doi: 10.19678/j.issn.1000-3428.0066795
|
3 |
张杰豪, 陈华杰, 姚勤炜, 等. 基于行为主体检测的视频行为快速检测. 计算机工程, 2019, 45 (12): 257- 262.
doi: 10.19678/j.issn.1000-3428.0053184
|
|
ZHANG J H , CHEN H J , YAO Q W , et al. Fast video action detection based on action subject detection. Computer Engineering, 2019, 45 (12): 257- 262.
doi: 10.19678/j.issn.1000-3428.0053184
|
4 |
WANG H , KLÄSER A , SCHMID C , et al. Dense Trajectories and motion boundary descriptors for action recognition. International Journal of Computer Vision, 2013, 103 (1): 60- 79.
doi: 10.1007/s11263-012-0594-8
|
5 |
WANG H, SCHMID C. Action recognition with improved trajectories[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2013: 3551-3558.
|
6 |
HU K , JIN J L , ZHENG F , et al. Overview of behavior recognition based on deep learning. Artificial Intelligence Review, 2023, 56 (3): 1833- 1865.
doi: 10.1007/s10462-022-10210-8
|
7 |
TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2015: 4489-4497.
|
8 |
DONAHUE J, HENDRICKS L A, GUADARRAMA S, et al. Long-term recurrent convolutional networks for visual recognition and description[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2015: 2625-2634.
|
9 |
NG J Y, HAUSKNECHT M, VIJAYANARASIMHAN S, et al. Beyond short snippets: deep networks for video classification[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2015: 4694-4702.
|
10 |
WANG L M, XIONG Y J, WANG Z, et al. Temporal segment networks: towards good practices for deep action recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2016: 20-36.
|
11 |
CARREIRA J, ZISSERMAN A. Quo vadis, action recognition? A new model and the Kinetics dataset[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2017: 4724-4733.
|
12 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2016: 770-778.
|
13 |
SHOU Z, WANG D A, CHANG S F. Temporal action localization in untrimmed videos via multi-stage CNNs[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2016: 1049-1058.
|
14 |
LIN T W, ZHAO X, SU H S, et al. BSN: boundary sensitive network for temporal action proposal generation[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2018: 3-21.
|
15 |
ZHAO Y B , ZHANG H , GAO Z , et al. A temporal-aware relation and attention network for temporal action localization. IEEE Transactions on Image Processing, 2022, 31, 4746- 4760.
doi: 10.1109/TIP.2022.3182866
|
16 |
ZHANG C L, WU J X, LI Y. ActionFormer: localizing moments of actions with transformers[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2022: 492-510.
|
17 |
LI P , CAO J C , YE X C . Prototype contrastive learning for point-supervised temporal action detection. Expert Systems with Applications, 2023, 213, 118965.
doi: 10.1016/j.eswa.2022.118965
|
18 |
韩璐, 霍纬纲, 张永会, 等. 基于多尺度特征融合与双注意力机制的多元时间序列预测. 计算机工程, 2023, 49 (9): 99- 108.
doi: 10.19678/j.issn.1000-3428.0065846
|
|
HAN L , HUO W G , ZHANG Y H , et al. Multivariate time series forecasting based on multi-scale feature fusion and dual-attention mechanism. Computer Engineering, 2023, 49 (9): 99- 108.
doi: 10.19678/j.issn.1000-3428.0065846
|
19 |
XIA H F , ZHAN Y Z . A survey on temporal action localization. IEEE Access, 2020, 8, 70477- 70487.
doi: 10.1109/ACCESS.2020.2986861
|
20 |
|
21 |
HJELM R D, FEDOROV A, LAVOIE-MARCHILDON S, et al. Learning deep representations by mutual information estimation and maximization[EB/OL]. [2023-10-05]. https://arxiv.org/abs/1808.06670v5.
|
22 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal Loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2017: 2980-2988.
|
23 |
ZHENG Z H , WANG P , LIU W , et al. Distance-IoU Loss: faster and better learning for bounding box regression. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34 (7): 12993- 13000.
doi: 10.1609/aaai.v34i07.6999
|
24 |
IDREES H , ZAMIR A R , JIANG Y G , et al. The THUMOS challenge on action recognition for videos "in the wild". Computer Vision and Image Understanding, 2017, 155, 1- 23.
doi: 10.1016/j.cviu.2016.10.018
|
25 |
HEILBRON F C, ESCORCIA V, GHANEM B, et al. ActivityNet: a large-scale video benchmark for human activity understanding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2015: 12-19.
|
26 |
CHAO Y W, VIJAYANARASIMHAN S, SEYBOLD B, et al. Rethinking the Faster R-CNN architecture for temporal action localization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 1130-1139.
|
27 |
LIU Q Y , WANG Z L . Progressive boundary refinement network for temporal action detection. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34 (7): 11612- 11619.
doi: 10.1609/aaai.v34i07.6829
|
28 |
LIN T W, LIU X, LI X, et al. BMN: boundary-matching network for temporal action proposal generation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2019: 3889-3898.
|
29 |
LIU X L , WANG Q M , HU Y , et al. End-to-end temporal action detection with transformer. IEEE Transactions on Image Processing, 2022, 31, 5427- 5441.
doi: 10.1109/TIP.2022.3195321
|
30 |
LIN C M, XU C M, LUO D H, et al. Learning salient boundary feature for Anchor-free temporal action localization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 3320-3329.
|
31 |
LIN T W, ZHAO X, SHOU Z, et al. Single shot temporal action detection[C]//Proceedings of the 25th ACM International Conference on Multimedia. New York, USA: ACM Press, 2017: 988-996.
|
32 |
XU H J, DAS A, SAENKO K. R-C3D: region convolutional 3D network for temporal activity detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2017: 5783-5792.
|
33 |
LONG F C, YAO T, QIU Z F, et al. Gaussian temporal awareness networks for action localization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2019: 344-353.
|
34 |
SU R , XU D , SHENG L , et al. PCG-TAL: progressive cross-granularity cooperation for temporal action localization. IEEE Transactions on Image Processing, 2021, 30, 2103- 2113.
doi: 10.1109/TIP.2020.3044218
|
35 |
ZHAO Y, XIONG Y J, WANG L M, et al. Temporal action detection with structured segment networks[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2017: 2914-2923.
|
36 |
YANG L , PENG H W , ZHANG D W , et al. Revisiting anchor mechanisms for temporal action localization. IEEE Transactions on Image Processing, 2020, 29, 8535- 8548.
doi: 10.1109/TIP.2020.3016486
|