1 |
赵振兵, 蒋志钢, 李延旭, 等. 输电线路部件视觉缺陷检测综述. 中国图象图形学报, 2021, 26 (11): 2545- 2560.
|
|
ZHAO Z B , JIANG Z G , LI Y X , et al. Overview of visual defect detection of transmission line components. Journal of Image and Graphics, 2021, 26 (11): 2545- 2560.
|
2 |
隋宇, 宁平凡, 牛萍娟, 等. 面向架空输电线路的挂载无人机电力巡检技术研究综述. 电网技术, 2021, 45 (9): 3636- 3648.
|
|
SUI Y , NING P F , NIU P J , et al. Review on mounted UAV for transmission line inspection. Power System Technology, 2021, 45 (9): 3636- 3648.
|
3 |
赵振兵, 张薇, 翟永杰, 等. 电力视觉技术的概念、研究现状与展望. 电力科学与工程, 2020, 36 (1): 1- 8.
|
|
ZHAO Z B , ZHANG W , ZHAI Y J , et al. Concept, research status and prospect of electric power vision technology. Electric Power Science and Engineering, 2020, 36 (1): 1- 8.
|
4 |
曾勇斌, 王星华, 彭显刚, 等. 输电线路缺陷风险建模及其预测方法研究. 电力系统保护与控制, 2020, 48 (10): 91- 98.
|
|
ZENG Y B , WANG X H , PENG X G , et al. Research on risk modeling and forecasting method of transmission line defects. Power System Protection and Control, 2020, 48 (10): 91- 98.
|
5 |
邵瑰玮, 刘壮, 付晶, 等. 架空输电线路无人机巡检技术研究进展. 高电压技术, 2020, 46 (1): 14- 22.
|
|
SHAO G W , LIU Z , FU J , et al. Research progress in unmanned aerial vehicle inspection technology on overhead transmission lines. High Voltage Engineering, 2020, 46 (1): 14- 22.
|
6 |
刘志颖, 缪希仁, 陈静, 等. 电力架空线路巡检可见光图像智能处理研究综述. 电网技术, 2020, 44 (3): 1057- 1069.
|
|
LIU Z Y , MIAO X R , CHEN J , et al. Review of visible image intelligent processing for transmission line inspection. Power System Technology, 2020, 44 (3): 1057- 1069.
|
7 |
戚银城, 武学良, 赵振兵, 等. 嵌入双注意力机制的Faster R-CNN航拍输电线路螺栓缺陷检测. 中国图象图形学报, 2021, 26 (11): 2594- 2604.
|
|
QI Y C , WU X L , ZHAO Z B , et al. Bolt defect detection for aerial transmission lines using Faster R-CNN with an embedded dual attention mechanism. Journal of Image and Graphics, 2021, 26 (11): 2594- 2604.
|
8 |
杨校李, 高林, 赵晓雨, 等. 基于改进YOLOv7-tiny算法的输电线路螺栓缺销检测. 湖北民族大学学报(自然科学版), 2023, 41 (3): 314- 321.
|
|
YANG X L , GAO L , ZHAO X Y , et al. Detecting bolts with missing pins of transmission lines based on improved YOLOv7-tiny algorithm. Journal of Hubei Minzu University (Natural Science Edition), 2023, 41 (3): 314- 321.
|
9 |
李瑞生, 张彦龙, 翟登辉, 等. 基于改进SSD的输电线路销钉缺陷检测. 高电压技术, 2021, 47 (11): 3795- 3802.
|
|
LI R S , ZHANG Y L , ZHAI D H , et al. Pin defect detection of transmission line based on improved SSD. High Voltage Engineering, 2021, 47 (11): 3795- 3802.
|
10 |
吴刘宸, 张辉, 刘嘉轩, 等. 基于区域注意力机制和多尺度特征融合的输电线路螺栓缺陷检测. 计算机科学, 2023, 50 (6A): 220200096.
|
|
WU L C , ZHANG H , LIU J X , et al. Defect detection of transmission line bolt based on region attention mechanism and multi-scale feature fusion. Computer Science, 2023, 50 (6A): 220200096.
|
11 |
张姝, 王昊天, 董骁翀, 等. 基于深度学习的输电线路螺栓检测技术. 电网技术, 2021, 45 (7): 2821- 2828.
|
|
ZHANG S , WANG H T , DONG X C , et al. Bolt detection technology of transmission lines based on deep learning. Power System Technology, 2021, 45 (7): 2821- 2828.
|
12 |
赵振兵, 张帅, 蒋炜, 等. 基于DBSCAN-FPN的输电线路螺栓缺销检测方法. 中国电力, 2021, 54 (3): 45- 54.
|
|
ZHAO Z B , ZHANG S , JIANG W , et al. Detection method for bolts with mission pins on transmission lines based on DBSCAN-FPN. Electric Power, 2021, 54 (3): 45- 54.
|
13 |
LIAO J , PIAO Y , SU J , et al. Unsupervised cluster guided object detection in aerial images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 11204- 11216.
|
14 |
YANG F, FAN H, CHU P, et al. Clustered object detection in aerial images[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 8311-8320.
|
15 |
LI C, YANG T, ZHU S, et al. Density map guided object detection in aerial images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Washington D. C., USA: IEEE Press, 2020: 737-746.
|
16 |
DUAN C, WEI Z, ZHANG C, et al. Coarse-grained density map guided object detection in aerial images[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 2789-2798.
|
17 |
DING X, ZHANG X, MA N, et al. RepVGG: making VGG-style ConvNets great again[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 13733-13742.
|
18 |
|
19 |
|
20 |
LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[EB/OL]. (2021-08-17)[2023-12-08]. https://arxiv.org/pdf/2103.14030.
|
21 |
LI Y C, ZHANG X F, CHEN D, et al. CSRNet: dilated convolutional neural networks for understanding the highly congested scenes[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 1091-1100.
|
22 |
|
23 |
|
24 |
LOHALA S , ALSADOON A , PRASAD P W C , et al. A novel deep learning neural network for fast-food image classification and prediction using modified loss function. Multimedia Tools and Applications, 2021, 80 (17): 25453- 25476.
|
25 |
|
26 |
|
27 |
TAN M, PANG R, Le Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 10781-10790.
|
28 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 7464-7475.
|
29 |
|
30 |
ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 2778-2788.
|
31 |
TANG S, ZHANG S, FANG Y. HIC-YOLOv5: improved YOLOv5 for small object detection[C]//Proceedings of 2024 IEEE International Conference on Robotics and Automation (ICRA). Washington D. C., USA: IEEE Press, 2018: 1091-1100.
|