作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (8): 330-340. doi: 10.19678/j.issn.1000-3428.0068960

• 图形图像处理 • 上一篇    下一篇

多分支多尺度点云补全网络

陈晓雷1,2,3,*(), 王荣1   

  1. 1. 兰州理工大学电气工程与信息工程学院,甘肃 兰州 730050
    2. 兰州理工大学甘肃省工业过程先进控制重点实验室, 甘肃 兰州 730050
    3. 兰州理工大学电气与控制工程国家级实验教学示范中心,甘肃 兰州 730050
  • 收稿日期:2023-12-06 修回日期:2024-04-23 出版日期:2025-08-15 发布日期:2024-06-26
  • 通讯作者: 陈晓雷
  • 基金资助:
    国家自然科学基金(61967012)

Multi-Branch and Multi-Scale Point Cloud Completion Network

CHEN Xiaolei1,2,3,*(), WANG Rong1   

  1. 1. College of Electrical Engineering and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
    2. Gansu Provincial Key Laboratory of Advanced Control for Industrial Processes, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
    3. National Experimental Teaching Demonstration Center of Electrical and Control Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
  • Received:2023-12-06 Revised:2024-04-23 Online:2025-08-15 Published:2024-06-26
  • Contact: CHEN Xiaolei

摘要:

现有点云补全网络无法同时提取高质量的点云全局特征和局部特征,丢失点云细节信息与坐标信息。为此,提出一种基于多分支多尺度特征融合的点云补全网络,该网络的核心创新在于分层渐进式特征提取与融合机制。在编码阶段,该网络首先通过联合特征提取模块(JFEM),对输入的三种不同分辨率的点云数据进行多尺度特征学习,依次提取包含丰富语义信息的全局特征和精细的局部特征,以最大化保留关键信息,然后利用细节保持池化(DP-Pool)模块对特征进行降维,避免传统池化操作造成的细节损失,并结合多分支编码结构实现全局与局部特征的高效融合,确保不同尺度的特征能够互补增强。在解码阶段,该网络通过点云重构(PCR)模块逐步恢复点云的几何结构,并利用多分支解码结构对不同层次的特征进行精细化上采样,最终生成高保真、高密度的补全点云。实验结果表明,所提网络的性能优于目前先进的10种点云补全网络,能进一步提高点云补全质量。

关键词: 点云补全, 多分支, 多尺度, 特征融合, 细节保持

Abstract:

This paper proposes a point cloud completion network based on multi-branch multi-scale feature fusion because the existing networks cannot extract high-quality global and local features of point clouds simultaneously and lose point cloud detail and coordinate information. The novelty of this network is its hierarchical progressive feature extraction and fusion mechanism. In the encoding stage, the proposed network first uses the Joint Feature Extraction Module(JFEM) to perform multi-scale feature learning using the input point cloud data of three different resolutions and successively extracts global features containing rich semantic information and fine local features to maximize the retention of key information. Subsequently, the Detail-Preserving Pooling (DP-Pool) module is used for reducing the dimensions of the features to avoid the loss of detail caused by traditional pooling operations. The multi-branch encoding structure is combined to achieve efficient fusion of global and local features, ensuring that features of different scales can complement each other. In the decoding stage, the network gradually restores the geometric structure of the point cloud via the Point Cloud Reconstruction (PCR) module, uses the multi-branch decoding structure to finely upsample the features at different levels, and generates a high-fidelity, high-density completed point cloud. Experimental results show that the performance of the proposed network is better than those of the top 10 advanced point cloud completion networks and can further improve the quality of point cloud completion.

Key words: point cloud completion, multi-branch, multi-scale, feature fusion, detail preserving