1 |
HESAMIAN M H , JIA W J , HE X J , et al. Deep learning techniques for medical image segmentation: achievements and challenges. Journal of Digital Imaging, 2019, 32 (4): 582- 596.
doi: 10.1007/s10278-019-00227-x
|
2 |
王美玲, 朱继庆, 李莹, 等. 基于卷积神经网络的喉镜图像解剖部位自动识别的研究. 临床耳鼻咽喉头颈外科杂志, 2023, 37 (1): 6- 12.
|
|
WANG M L , ZHU J Q , LI Y , et al. Automatic anatomical site recognition of laryngoscopic images using convolutional neural network. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2023, 37 (1): 6- 12.
|
3 |
潘晓英, 白伟栋, 代栋, 等. 用于咽喉器官分割的空洞残差金字塔算法. 计算机辅助设计与图形学学报, 2023, 35 (7): 1000- 1009.
|
|
PAN X Y , BAI W D , DAI D , et al. Dilated residual pyramid algorithm for throatorgan segmentation. Journal of Computer-Aided Design & Computer Graphics, 2023, 35 (7): 1000- 1009.
|
4 |
吉彬, 任建君, 郑秀娟, 等. 改进U-Net在喉白斑病灶分割中的应用. 计算机工程, 2020, 46 (9): 248- 253.
doi: 10.19678/j.issn.1000-3428.0056011
|
|
JI B , REN J J , ZHENG X J , et al. Application of improved U-Net in segmentation of laryngeal leukoplakia lesion. Computer Engineering, 2020, 46 (9): 248- 253.
doi: 10.19678/j.issn.1000-3428.0056011
|
5 |
JHA D, SMEDSRUD P H, RIEGLER M A, et al. ResUNet++: an advanced architecture for medical image segmentation[C]//Proceedings of IEEE International Symposium on Multimedia. Washington D. C., USA: IEEE Press, 2019: 225-2255.
|
6 |
PATEL K, BUR A M, WANG G H. Enhanced U-Net: a feature enhancement network for polyp segmentation[C]//Proceedings of the 18th Conference on Robots and Vision. Washington D. C., USA: IEEE Press, 2021: 181-188.
|
7 |
ZHANG Y F, PANG B, LU C W. Semantic segmentation by early region proxy[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE Press, 2022: 1258-1268.
|
8 |
HUANG X , DENG Z , LI D , et al. MISSFormer: an effective transformer for 2D medical image segmentation. IEEE Transactions on Medical Imaging, 2023, 42 (5): 1484- 1494.
doi: 10.1109/TMI.2022.3230943
|
9 |
XU G P, ZHANG X, HE X W, et al. LeViT-UNet: make faster encoders with Transformer for medical image segmentation[C]//Proceedings of Conference on Pattern Recognition and Computer Vision. Berlin, Germany: Springer, 2024: 42-53.
|
10 |
JI Y F, ZHANG R M, WANG H J, et al. Multi-compound transformer for accurate biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springe, 2021: 326-336.
|
11 |
THAWAKAR O, NARAYAN S, CAO J L, et al. Video instance segmentation via multi-scale spatio-temporal split attention transformer[C]//Proceedings of International Conference on Computer Vision. Berlin, Germany: Springe, 2022: 666-681.
|
12 |
|
13 |
WANG Z D, CUN X D, BAO J M, et al. Uformer: a general U-shaped transformer for image restoration[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE Press, 2022: 17683-17693.
|
14 |
XIE E Z, WANG W H, YU Z D, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2021: 12077-12090.
|
15 |
FAN D P, JI G P, ZHOU T, et al. PraNet: parallel reverse attention network for polyp segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springer, 2020: 263-273.
|
16 |
HUANG C H, WU H Y, LIN Y L. HarDNet-MSEG: a simple encoder-decoder polyp segmentation neural network that achieves over 0.9 mean dice and 86 FPS[EB/OL]. [2024-07-01]. https://arxiv.org/abs/2101.07172v2.
|
17 |
LIN A L , CHEN B Z , XU J Y , et al. DS-TransUNet: dual swin transformer U-Net for medical image segmentation. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1- 15.
|
18 |
YAO C, HU M H, LI Q L, et al. Transclaw U-Net: claw U-Net with transformers for medical image segmentation[C]//Proceedings of the 5th International Conference on Information Communication and Signal Processing. Washington D. C., USA: IEEE Press, 2022: 280-284.
|
19 |
|
20 |
ZHANG Y D, LIU H Y, HU Q. TransFuse: fusing transformers and CNNs for medical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springe, 2021: 14-24.
|
21 |
LI Y J, CAI W T, GAO Y, et al. More than encoder: introducing transformer decoder to upsample[C]//Proceedings of IEEE International Conference on Bioinformatics and Biomedicine. Las Vegas, USA: IEEE Press, 2022: 1579-1602.
|
22 |
ZHANG Z , LIN Z , XU J , et al. Bilateral attention network for RGB-D salient object detection. IEEE Transactions on Image Processing, 2021, 30, 1949- 1961.
doi: 10.1109/TIP.2021.3049959
|
23 |
ZHENG S X, LU J C, ZHAO H S, et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 6881-6890.
|
24 |
ZHU X Z, CHENG D Z, ZHANG Z, et al. An empirical study of spatial attention mechanisms in deep networks[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 6688-6697.
|
25 |
WANG H Y, XIE S, LIN L F, et al. Mixed transformer U-Net for medical image segmentation[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2022: 2390-2394.
|
26 |
WANG H Y, XIE S, LIN L F, et al. Mixed transformer U-Net for medical image segmentation[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2022: 2390-2394.
|
27 |
VALANARASU J M J, OZA P, HACIHALILOGLU I, et al. Medical transformer: gated axial-attention for medical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springe, 2021: 36-46.
|
28 |
CAO H, WANG Y Y, CHEN J, et al. Swin-UNet: UNet-like pure transformer for medical image segmentation[C]//Proceedings of International Conference on Computer Vision. Berlin, Germany: Springe, 2023: 205-218.
|
29 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 3431-3440.
|
30 |
FAN D P , ZHOU T , JI G P , et al. Inf-Net: automatic COVID-19 lung infection segmentation from CT images. IEEE Transactions on Medical Imaging, 2021, 39 (8): 2626- 2637.
|